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Abstract

Bayesian inference is becoming more and more prevalent, not only for statistical models in fields like

psychology, but in Machine Learning as well. It not only allows to incorporate domain knowledge for

a given inference problem, but also to quantify uncertainties about the inferred model parameters

and, in turn, the model’s predictions. Computing the posterior distribution over model parameters,

however, turns out to be intractable for most practical purposes.

Sophisticated approaches like Markov Chain Monte Carlo methods, in particular based on the

state of the art Hamiltonian Monte Carlo kernel, have been applied to reliably generate samples

from the posterior distribution even for complex models. However, there are still some drawbacks

to those methods, when considering their application to models with exceedingly high numbers of

parameters and large datasets, as is typical for machine learning problems.

In the past several years, variational Bayesian inference, which formulates the Bayesian inference

problem as an optimization task, became popular due to recent advances in optimization techniques.

More specifically, it allows to apply stochastic optimization and thus scale Bayesian inference to

large datasets. The idea is to define a parameterized family of distributions and find the member

minimizing a divergence measure to the true posterior distribution. One approach to define such a

family is to make use of normalizing flows, which define a variational family as all the push-forwards

of some base distribution along a parameterized di↵eomorphism. Much research has focused on the

question of which transformations allow for e�cient computations and simultaneously expressive

variational families.

Recently, e�cient normalizing flows based on Hamiltonian dynamics were proposed in the con-

text of modeling the underlying distribution of some dataset, i.e., density estimation. The focus

of this thesis is to summarize the relevant mathematical foundations of this approach and adapt

it for an application to variational Bayesian inference. Using two simple Bayesian models—a uni-

variate Gaussian and a linear regression model—the goal is to show qualitatively that Hamiltonian

normalizing flows can be used for variational Bayesian inference. An additional contribution is the

development of a Python software package for Bayesian inference, based on TensorFlow Probabil-

ity, which allow for a flexible definition of Bayesian models and choice of inference algorithms. In

particular, it is used to implement the experiments discussed in this thesis.
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Chapter 1

Introduction

The scientific endeavour in general is based on the idea of modeling the world and the processes within

it mathematically on di↵erent levels of description. In some domains the uncertainties involved

become dominant. They can be either fundamental or accounted for by methodological imprecision.

This is where statistical models come into play and allow for a more precise quantification of those

uncertainties.

After a brief review of the relevant mathematics and notation involved (Section 1.1), this intro-

duction will discuss classical statistical models and the parameter inference problem (Section 1.2).

This will lead up to the notion of Bayesian models and the fundamental problem of Bayesian infer-

ence (Section 1.3). Two di↵erent approaches to resolve this problem are introduced and it follows a

high level description of the state of the art methods for Bayesian inference (Section 1.4). Finally,

the structure and goals of the thesis are outlined to provide an overview (Section 1.5).

1.1 Probability Distributions and Their Representations

Before getting into statistical models, a few remarks on the mathematical foundations and notation

are in order. Most of the theory regarding statistical models is best understood in the context

of measure theory. The objective for this section is, in particular, to highlight the distinction

between probability distributions and their representation via densities or samples. There will

not be precise definitions provided for every mathematical object, since those are available in any

standard reference. The focus lies on an intuitive review, which highlights the relationship between

the relevant objects. An introduction to measure and probability theory is for example provided by

Çinlar (2011) and Kallenberg (1997), which will be the main references for the theory summarized

below. In some respects the notation will diverge slightly from the conventions used there, following

Betancourt (2018b, 2018a) in his online case studies on probability theory. Folland (2009) is another

useful reference for an introduction to measure theory from a real analysis perspective.

1
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1.1.1 Measurable Spaces and Measures

The arena of statistical models, and more specifically probability distributions, are measurable

spaces. A measurable space (X,⌃X) is a non-empty set X equipped with a �-algebra ⌃X . A

�-algebra is a subset of the power set P(X), which satisfies certain closure conditions w.r.t. to set

operations. It comprises the so called measurable sets of X and thus defines a structure on this set.

For this thesis it will later be useful to additionally assume at least an underlying topology on the

sets of interest. This structure defines a notion of neighborhoods for the elements of a set, which, in

particular, allows for the concept of continuity of maps between such spaces. A choice of topology

OX on a set X may induce a choice of �-algebra BX , called a Borel �-algebra. Accordingly, any time

a measurable space is considered to have an underlying topological structure, where the measurable

sets are induced by the topology, it will be denoted (X,BX).

Measurable maps are maps f : X �! Y between measurable spaces (X,⌃X), (Y,⌃Y ), where the

pre-image A = f
�1(B) of any measurable set B 2 ⌃Y is again a measurable set A 2 ⌃X . In other

words, measurable maps preserve the measurable set structures and are thus called the morphisms

of measurable spaces. Two measurable spaces that permit the existence of a bijection between them,

which is measurable in both directions, are called isomorphic. That is, they are in a sense equivalent.

A measure on a measurable space (X,⌃X) is a map µX : ⌃X �! [0,1] from the measurable

sets into the extended non-negative real numbers, which consistently assigns a generalized notion of

mass to each measurable subset A 2 ⌃X . Together, the measurable space and a choice of measure

define what is called a measure space (X,⌃X , µX). Measurable maps that also preserve the assigned

mass are then the morphisms of measure spaces and are usually referred to as measure preserving

maps. Two measure spaces that permit a bijection with this property in both directions are again

called isomorphic. Such isomorphic measure spaces are equivalent from the point of view of measure

theory, that is, they share all their relevant properties.

Measure spaces allow for the notion of Lebesgue integration of measurable functions f : X �! R
w.r.t. the measure µX on that space:

µXf :=

Z

X

f dµX =

Z

X

f(x)µX(dx). (1.1)

For countable underlying sets X, this corresponds to a sum:

µXf :=
X

x2X

f(x)µX({x}). (1.2)

Intuitively, the Lebesgue integral µXf computes a weighted sum of the function values.
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1.1.2 Probability Measures and Distributions

To get to probability distributions, one has to consider normalized finite measures on measurable

spaces. Let ⇡X have those properties, i.e., ⇡X(X) = 1. Then ⇡X is referred to as a probability

measure and the triple (X,⌃X ,⇡X) is called a probability space. Note that a probability measure

thus distributes a conserved quantity, the probability mass, onto the measurable sets. This is why

they are also referred to as probability distributions. One can obviously also consider Lebesgue

integrals w.r.t. probability distributions, since they are just a special case of measures. Such an

integral is also referred to as an expectation of a measurable function f w.r.t. to the distribution ⇡X ,

which justifies the notation:

E⇡X [f ] =

Z

X

f(x)⇡X(dx). (1.3)

In this particular case, the Lebesgue integral denotes a weighted average instead of just any weighted

sum, hence the term ’expectation’. The following will mostly restrict to considering probability

distributions, although some things may be true for more general measures as well.

1.1.3 Probability Kernels and Conditional Distributions

Probability kernels are important objects, not only because they can represent regular conditional

distributions and be used to construct joint distributions on product spaces, but also in the theory of

Markov Chain Monte Carlo methods, which are the state of the art approach to Bayesian inference.

A map K : X ⇥⌃Y �! [0,1], which defines measurable functions KB : X �! [0,1] 8B 2 ⌃Y

in the first and measures Kx : ⌃Y �! [0,1] 8x 2 X in the second argument, is called a transition

kernel from (X,⌃X) to (Y,⌃Y ). Probability kernels are those transition kernels, for which the

measures Kx are probability measures, while a Markov kernel on (X,⌃X) is a probability kernel

from (X,⌃X) to itself. It is useful to note that, by construction, a transition kernel K defines a

map:

 : X �!M(Y ) (1.4)

from the origin space into the set of all measures on the target space. That is, it defines a measure

Kx 2M(Y ) on the target space for each point x 2 X in the origin space.

In general, a transition kernel can push forward a measure µX on the origin space (X,⌃X) to

define a measure µXK on the target space (Y,⌃Y ) according to:

(µXK)(B) =

Z

X

KB(x)µX(dx) =

Z

X

K(x,B)µX(dx) 8B 2 ⌃Y . (1.5)

Moreover, it can pull back a measurable function f : Y �! R+ on Y to define a function
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Kf : X �! R+ on X according to:

(Kf)(x) =

Z

Y

f(y)Kx(dy) =

Z

Y

f(y)K(x, dy) 8x 2 X. (1.6)

Without further explanation, the following chapters will assume that probability kernels can

represent regular conditional distributions (see Çinlar (2011) or Kallenberg (1997) for technical

details). In particular, kernels K : X⇥⌃Y �! [0, 1] and the corresponding conditional distributions

⇡Y |X : ⌃Y ⇥X �! [0, 1], (B, x) 7! ⇡Y |X(B|x) = K(x,B) may be used interchangeably.

Accordingly, for probability kernels from (X,⌃X) to (Y,⌃Y ), i.e., conditional distributions

⇡Y |X(dy|x), the push-forward (1.5) and pull-back (1.6) can be written in terms of expectations.

That is, the push-forward of a distribution ⇡X w.r.t. such a kernel yields:

⇡Y (B) = E⇡X [⇡Y |X(B|x)] =
Z

X

⇡Y |X(B|x)⇡X(dx) 8B 2 ⌃Y . (1.7)

The pull-back of a measurable function then can be considered a conditional expectation:

E⇡Y |X [f ](x) =

Z

Y

f(y)⇡Y |X(dy|x) 8x 2 X. (1.8)

1.1.4 Joint and Marginal Distributions

A distribution over a product space, e.g., ⇡X⇥Y : ⌃X ⌦ ⌃Y �! [0, 1] on (X ⇥ Y,⌃X ⌦ ⌃Y ), is

called a joint distribution. A marginal distribution is any push-forward of a joint distribution along

a projection onto a component space. For example, let !X : X ⇥ Y �! X be a projection, then

⇡X = ⇡X⇥Y �!�1
X

is the marginal distribution over the component space (X,⌃X), where !�1
X

denotes

the pre-image under the map !X . Some joint distributions are recovered as the product of their

marginal distributions, i.e.:

⇡X⇥Y (A,B) := ⇡X⇥Y (A⇥B) = ⇡X(A)⇡Y (B) 8A 2 ⌃X , B 2 ⌃Y . (1.9)

In this case, they are said to have independent component distributions. Product spaces, however,

allow much richer joint distributions to be defined with inherent dependencies between the compo-

nents, in which case the joint distribution is not recovered as a product of the marginals. Starting

from a distribution ⇡X on the component space (X,⌃X), one can construct such joint distributions

⇡X⇥Y using probability kernels K : X ⇥ ⌃Y �! [0, 1] according to:

⇡X⇥Y (A,B) =

Z

A

K(x,B)⇡X(dx) 8A 2 ⌃X , B 2 ⌃Y . (1.10)
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Equivalently, this can be written in terms of a conditional distribution:

⇡X⇥Y (A,B) =

Z

A

⇡Y |X(B|x)⇡X(dx), (1.11)

or in a short di↵erential notation based on Çinlar (2011):

⇡X⇥Y (dx, dy) = ⇡Y |X(dy|x)⇡X(dx). (1.12)

The inverse to the problem of constructing joint distributions is called disintegration. A disintegra-

tion decomposes a joint distribution ⇡X⇥Y w.r.t. a projection map, e.g. !X , into the corresponding

marginal distribution ⇡X and a kernel or conditional distribution ⇡Y |X . For any given projection

map, this decomposition is almost surely unique.

If the disintegration ⇡X⇥Y (dx, dy) = ⇡Y |X(dy|x)⇡X(dx) is known, it is trivial to construct the

remaining marginal distribution ⇡Y as a push-forward of ⇡X along the probability kernel:

⇡Y (B) = E⇡X

h
⇡Y |X(B|x)

i
=

Z

X

⇡Y |X(B|x)⇡X(dx). (1.13)

Note that this requires integration over the complete component space X.

1.1.5 Representing Distributions with Densities

In practice distributions are not particularly useful when it comes to computations, since they are

defined only on the measurable subsets of the underlying space and are of an highly abstract nature.

This is where di↵erent representations of distributions come into play. In particular, probability

distributions may be represented uniquely by densities.

More generally, consider any choice of measure µX in relationship to some base measure ⌫ on a

given measurable space (X,⌃X). If µX is absolutely continuous w.r.t. ⌫, it can be represented by a

⌫-measurable function p : X �! R+ according to the Radon-Nikodym theorem (Çinlar, 2011):

µX(A) =

Z

A

µX(dx) =

Z

A

p(x)⌫(dx) 8A 2 ⌃X . (1.14)

This can also be expressed in the aforementioned short di↵erential notation as:

µX(dx) = p(x)⌫(dx). (1.15)

Since the function p is unique up to ⌫-negligible sets, this justifies calling it the Radon-Nikodym

derivative or the density of µX w.r.t. ⌫ denoted by:

p(x) :=
µX(dx)

⌫(dx)
(x) =

dµX

d⌫
(x) 8x 2 X. (1.16)
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If two measures are absolutely continuous w.r.t. each other, they are called equivalent and the

Radon-Nikodym derivative exists in both directions.

Note that there are some natural choices for base measures on uncountably infinite and countable

underlying sets. Let (X,BX) be a countable set equipped with the Borel �-algebra induced by the

discrete topology OX = P(X), such that it may be referred to as a discrete space. A natural choice

of base measure on such a discrete space is the counting measure �, which assigns to each measurable

subset A 2 BX its magnitude �(A) = |A|. For a measurable space (X,BX) with an uncountably

infinite underlying set X = Rn, for some n 2 N, with the Borel �-algebra induced by the standard

topology on Rn, a natural choice is the so called Lebesgue measure �n. It is the unique translation

invariant measure which assigns �n(Q) = 1 to any unit hyper-cube Q ✓ Rn and thus corresponds to

the usual notion of uniform mass distribution. For a more technical discussion on the construction

of the Lebesgue measure refer to Folland (2009).

An important aspect of the density representation is that it recovers the underlying measure.

That is, it consistently breaks down the measure’s assignment of generalized mass µX(A) to measur-

able sets A 2 ⌃X into an assignment of density p(x) to the individual elements x 2 X. This allows

to recover the mass of any measurable set by integrating over the density of the elements of that

set. Choosing the abovementioned natural measures as base measures provides useful examples:

1. for discrete spaces (X,BX) with the counting measure � as a base measure:

µX(A) =
X

x2A

dµX

d�
(x)�({x}) =

X

x2A

p(x) 8A 2 BX , (1.17)

2. for uncountably infinite spaces (X = Rn
,BX) with the Lebesgue measure �n as a base measure:

µX(A) =

Z

A

µX(dx) =

Z

A

dµX

d�n
�
n(dx) =

Z

A

p(x) �n(dx) =

Z

A

p(x) dx 8A 2 BX . (1.18)

In particular, note that all of this applies to probability distributions and yields the typical notions

of probability density and mass functions, where mass functions refer to densities on discrete spaces.

This is also true for joint and conditional distributions, yielding joint and conditional probability

density or mass functions:

⇡X(dx) = p(x)�(dx)

⇡Y |X(dy|x) = p(y|x)µ(dy)

⇡X⇥Y (dx, dy) = p(x, y)⌫(dx, dy),

(1.19)

where �, µ and ⌫ are some base measures on the corresponding measurable spaces. The following

chapters will restrict to uncountably infinite underlying spaces, in particular, to those that are equal

to some Rn, if not specified otherwise. Any considered measure or distribution is assumed to be
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equivalent to the Lebesgue measure, such that they have valid density functions on Rn in relation

to the usual notion of uniform mass distribution. It is useful to assume equivalence to the base

measure, to ensure that the Radon-Nikodym derivative between any two measures exists in both

directions.

1.1.6 Representing Distributions with Samples

Given the representation of distributions ⇡X as densities p(x), w.r.t. the Lebesgue measure �, the

computation of expectations of measurable functions f : X �! R can be done in practice according

to:

E⇡X [f ] =

Z

X

f(x)⇡X(dx) =

Z

X

f(x)p(x)�(dx) =

Z

X

f(x)p(x)dx. (1.20)

Note, however, that these integrals do not necessarily have a closed form solution and thus in many

cases need to be approximated via numerical integration. For high dimensional uncountably infinite

spaces (X = Rn
,BX), those integrals cannot be e�ciently computed with standard quadrature

rules. Moreover, in practice usually most of the probability mass is associated with only a small,

not necessarily connected region of the total space. Accordingly, most function evaluations do not

contribute much to the expectation, if the evaluation points lie outside of this distinguished region,

making them rather ine�cient (Betancourt, 2017a).

A reasonable alternative to the representation of a distribution ⇡X via a density function, there-

fore, seems to be a procedure that is capable of generating a finite sequence of points in X, which

allows for accurate estimates of expectations w.r.t. this distribution. Let DN = (x1, x2, ..., xN ) be a

sequence of points in X and f : X �! R any measurable function. Then the term:

f̂(DN ) =
1

N

NX

n=1

f(xn) (1.21)

is called the empirical expectation of f . Any process that is capable of generating sequences DN

of points, for which this empirical expectation is a consistent estimator for the expectation of any

measurable function f w.r.t. distribution ⇡X , i.e.:

lim
N!1

f̂(DN ) = E⇡X [f ] , (1.22)

will be called a sampling procedure representing the distribution ⇡X . The generated finite sequences

are then referred to as samples of ⇡X , which are called exact, if every point in the sequence was

generated independently of the others. Accordingly, any sub-sequence of exact samples is also an

exact sample, as is any individual point. If a point x 2 X is a sample generated from a sampling

procedure representing ⇡X , then this will be denoted by x ⇠ ⇡X (Betancourt, 2017b, 2018b).



8 CHAPTER 1. INTRODUCTION

There exist elaborate algorithms, which are, at least for all practical purposes, capable of gen-

erating such exact samples for standard distributions (Devroye, 1986), for example those that can

be represented by a uniform or Gaussian density w.r.t. the Lebesgue measure. Sampling from joint

distributions of such standard distributions can be realized using the so called ancestral sampling

approach (Bishop, 2006).

1.2 Statistical Models and Inference

This section briefly introduces statistical models and the problem of parameter inference. In par-

ticular, it will specify the kinds of models considered in the following chapters. Useful references

for the theory of statistics are Lehmann and Casella (1998) and Keener (2010). McCullagh (2002)

also gives a good account of what the generally accepted definition of a statistical model is, while

pointing out some resulting problems and providing a treatment on the level of category theory.

This section will make use of all the above references, but mostly follows Betancourt (2019) in his

case study on probabilistic modeling and statistical inference.

1.2.1 Observation and Covariate Spaces

To be as general as possible, consider some domain or population M . Usually, one is interested in

some particular abstract characteristics of the elements of this domain. To quantify them, those

characteristics are operationalized, which allows to measure them in experiments. This choice of

operationalization induces a mapping y : M �! Y from the elements of the domain into a so called

observation or target space Y . Similarly, it induces a map x : M �! X from the domain into an

additional space called covariate or feature space X (McCullagh, 2002).

Any statistical experiment now typically assumes an independently drawn set of experimental

units U ⇢M from this domain. The idea then is that any experimental unit u 2 U can be mapped

onto an element y(u) 2 Y , as well as an element x(u) 2 X. This allows to associate each one of

them with a set of values, quantifying the covariates and targets of interest (McCullagh, 2002).

Consider, for example, a psychological experiment, where the influence of age on intelligence in

men is investigated. In this case, the domain M is the set of all men. Now assume age is measured

in years, while intelligence is operationalized and measured as the IQ of any given man. This choice

defines the map y : M �! Y from the set of all men into the possible IQ values, as well as the

map x : M �! X into the set of possible age values. Let the subset U ⇢ M be the subjects of

the experiment, i.e. the experimental units, which are assumed to be randomly selected men. The

above maps then allow to assign to each subject u 2 U the corresponding age x(u) and IQ value

y(u).

The theory of this thesis will restrict to the case of so called generative models, that is, models for

which the covariate space is empty. Relating this to the above example, the goal is to model only the
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underlying distribution of IQ in men, without considering additional explanatory factors like age.

This simplifies the notation significantly. Any algorithm discussed in later chapters, however, can be

applied to so called regression models as well, where the covariate space is non-empty, by considering

an additional conditioning on the covariates. This will be verified with the linear regression example

in Chapter 5.

Finally, the following chapters assume the map y : M �! Y to be fixed by some purposefully

chosen operationalization, such that Y is a Euclidean space Rn. A dataset of N independent

experimental units U = {ui}Ni=1 obtained from M can thus, for the purposes of the theory presented

in this thesis, be represented by a tuple D = (y(ui))Ni=1 2 Y
N consisting only of the corresponding

elements in a fixed observation space.

1.2.2 Data Generating Processes

To be mathematically more precise, the observation or target space is assumed to be a measurable

space (Y,BY ). This allows to establish probability distributions ⇡Y on it. In the context of statistical

modeling any such distribution will sometimes be referred to as a data generating process. The set

of all possible data generating processes then will be denoted ⇧(Y ).

At the heart of classical statistical modeling lies the assumption of the existence of a true un-

derlying data generating process ⇡†
Y
2 ⇧(Y ), such that the elements of the dataset D 2 Y

N are

assumed to be exact samples of ⇡†
Y
. Alternatively, D itself can be considered a single sample of the

corresponding unique joint distribution ⇡†
Y N =

N
N

i=1 ⇡
†
Y
. Finding ⇡†

Y
2 ⇧(Y ), however, is clearly in-

tractable for all practical cases. More importantly, there is not even an obvious objective w.r.t. which

one could judge which ⇡Y 2 ⇧(Y ) is in fact the true data generating process (Betancourt, 2019).

1.2.3 The Model Configuration Space and Its Parameterizations

A possible approach is to restrict the search space of all generating processes ⇡(Y ) to a tractable

subset. In general, this subset will be called the model configuration space and denoted by S ✓ ⇧(Y ).

Space in this context is used in a colloquial sense, mathematically it is just a set with no additional

structures. Such a subset S also defines a statistical model in the classical sense (Betancourt, 2019;

McCullagh, 2002).

Note, however, that there is no canonical way to choose S. In particular, since ⇧(Y ) is just the

set of probability measures on (Y,BY ), the elements ⇡Y 2 S are only abstract mathematical objects,

which are defined by exactly how much probability mass they assign to each measurable set.

A map P : ⇥ �! ⇧(Y ) from some parameter set or parameter space ⇥ ✓ Rd, d 2 N, into the

set of all possible distributions on Y , defines a so called parameterized model simply as the image

of the parameter space S := P (⇥) (McCullagh, 2002; Lehmann & Casella, 1998; Keener, 2010). In

particular, any family of density functions p(y; ✓) with ✓ 2 ⇥ represents a set of probability measures

on Y and thus induces a model configuration space choice.
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From another perspective, given a fixed choice of model configuration space S ✓ ⇧(Y ), a sur-

jective map P : ⇥ �! S is called a parameterization of S. In case the map is injective as well, and

thus a bijection, the parameterization P is called identifyable. That is, every parameter tuple ✓ 2 ⇥
can be uniquely identified with an element ⇡Y 2 S. Intuitively, a parameterization allows to assign

parameter values to each model configuration (Betancourt, 2019; McCullagh, 2002).

In general, there may exist many possibly equivalent parameterizations, i.e., distinct surjective

maps Pi : ⇥i �! S from di↵erent parameter spaces ⇥i 8i 2 I onto the model configuration space S,
where I ✓ N is some index set. They may be equivalent in the sense that they are isomorphic as sets,

that is, there exists at least one bijective map between them. If only identifyable parameterizations

are considered, all parameter spaces are isomorphic to each other, since they are all isomorphic to

the model configuration space S. Set isomorphisms g : ⇥j �! ⇥k between parameter spaces ⇥j ,⇥k,

for j, k 2 I, associated with di↵erent parameterization maps Pj , Pk are called reparameterizations.

The following commutative diagram visualizes the relationship between di↵erent parameterizations

as described above.

S

g
�1(⇥k) = ⇥j ⇥k = g(⇥j)

Pj = Pk � g

g

Pk = Pj � g�1

Figure 1.1: Parameterizations Pj , Pk of the model configuration space S.

For simplicity, the theoretic discussions of this thesis will restrict to parameterizations with

parameter spaces ⇥ = Rd for some d 2 N. This will later on allow to assume much more structure

on the spaces involved without having to discuss di↵erentiable manifolds and even more advanced

concepts. Under this assumption, it is also clear what is meant by the dimension of a parameter

space and it is possible to consider di↵erentiable maps between di↵erent parameter spaces, which will

become relevant in the context of normalizing flows. For classical statistical models it is, however,

su�cient to consider parameter spaces to be just sets.

The univariate Gaussian family of density functions provides a simple example for a map defining

a parameterized model with two parameters, ✓ = (µ,�) 2 ⇥0 = R ⇥ R+ ⇢ R2. This corresponds

to restricting the set of all probability distributions to the subset that permits a Gaussian density

representation on (Y,BY ) w.r.t. the Lebesgue measure. It is easy to see that there exists a repa-

rameterization to ⇥1 = R2 via a logarithmic transformation of the standard deviation parameter

�. This particular parameterization would then be valid according to the restrictions of this thesis

mentioned above. Note, that the reparameterization does only e↵ect the functional form of the

density, but not the model configuration space S, it simply results in a di↵erent ’labeling’ of the

elements of S.
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1.2.4 Parameter Inference - Fitting Models to Data

Having chosen a model configuration space S, based on a family of probability density functions

p(y; ✓) in some parameterization P : ⇥ �! S, the problem of finding the true underlying data

generating process ⇡†
Y

is far from solved. The restriction S might not even contain ⇡†
Y
. In practice,

this is indeed the rule rather than the exception (Betancourt, 2019).

Moreover, a finite dataset cannot uniquely determine the true underlying distribution because of

the uncertainties involved in drawing samples from the underlying population, such that the problem

of finding ⇡†
Y

is in general ill-posed. Eventually, one is left with the problem of at least finding a

member ⇡⇤
Y
2 S, represented by p(y; ✓⇤) w.r.t. the Lebesgue measure, which is closest to ⇡†

Y
in terms

of being something like a best guess. A useful heuristic here is to choose the member, for which the

density of the product distribution maximizes the probability density of the dataset D, i.e.:

✓
⇤ := argmax

✓2⇥
p(D; ✓) = argmax

✓2⇥

NY

i=1

p(yi; ✓). (1.23)

This is equivalent to maximizing the monotone logarithmic transformation, i.e., the log probability

density of the data, which in practice also provides better numerical stability.

✓
⇤ := argmax

✓2⇥
log p(D; ✓) = argmax

✓2⇥

NX

i=1

log p(yi; ✓). (1.24)

The parameters ✓⇤ are called the maximum likelihood solution to the parameter inference problem.

They constitute a point estimate for the model parameters that maximizes the probability density

of the data (Keener, 2010).

For some special cases it is possible to solve this problem analytically, but typically gradient based

optimization approaches are used in practice. The optimization problem is in general non-convex,

such that there is no guarantee to find an optimal solution to this problem, even if it exists.

1.3 The Bayesian Inference Problem

The Bayesian approach to statistical modeling is based on the realization that fundamentally all

distributions over the observation space may have been the true generating process, but based on

prior knowledge and the observed data this is more likely for some than for others. It embraces

the fact, that the inference problem has no unique solution, in the sense of a particular model

configuration being the true one. According to this perspective, the classical maximum likelihood

heuristic, although useful in practice, only makes sense if the inference problem is uniquely solvable,

i.e., in the case of infinite available data. This is exactly the regime where the classical and the

Bayesian approach agree (van der Vaart, 1998; Betancourt, 2019).
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1.3.1 Bayesian Models

To define Bayesian models formally, consider the observation space (Y,BY ) and some parameter

space ⇥. This time, however, assume an underlying topological structure on ⇥ and the induced

Borel �-algebra B⇥, such that the parameter space is a measurable space (⇥,B⇥).
A map P : ⇥ �! ⇧(Y ) now obviously defines some transition kernel according to (1.4) and thus

corresponds to a choice of conditional distribution ⇡Y |⇥, which may be defined via a conditional

density function p(y|✓) w.r.t. the Lebesgue measure on Y . It not only determines a model configu-

ration space S := P (⇥), but also a �-algebra ⌃S := {A 2 P(S) : P
�1(A) 2 B⇥}, such that S can

be considered a measurable space (S,⌃S) as well.

A Bayesian model is then constructed by introducing a so called prior distribution ⇡⇥ 2 ⇧(⇥)
over the parameter space, via a selection of a prior density function p(✓). This distribution has a

corresponding push-forward ⇡S = ⇡⇥ � P�1 2 ⇧(S) on the model configuration space, which will

be referred to as prior distribution as well. It encapsulates a priori assumptions about how likely

the di↵erent model configurations are. A choice of prior distribution ⇡⇥ finally induces a joint

distribution:

⇡Y⇥⇥(dy, d✓) = ⇡⇥(d✓)⇡Y |⇥(dy|✓) (1.25)

on the product space (Y ⇥ ⇥,BY ⌦ B⇥). This joint distribution, or more generally any joint

distribution over this product space, defines a Bayesian model in the chosen parameterization

P : ⇥ �! S ✓ ⇧(Y ).

When discussing Bayesian inference, everything will play out in the frame of some parameter-

ization. It is useful, however, to keep in mind that distributions over a parameter space have a

more abstract counterpart, that is their push-forward distribution on (S,⌃S) along the respective

parameterization. Note that, by construction, the initial parameterization map, in which the model

is defined, is measurable. For any other parameterization, and consequently for reparameterizations,

this will be an additional requirement.

Very simply put, the goal of Bayesian inference is to find the disintegration of the joint distribution

defining the model w.r.t. the projection onto the observation space Y , which is not a trivial problem.

Bayes’ rule, however, provides a recipe to solve it.

1.3.2 Bayes’ Rule

The widely known Bayes’ rule is based on the observation that there exist two canonical disinte-

grations of any Bayesian model, i.e., joint distribution ⇡Y⇥⇥, according to the projections onto the

component spaces Y and ⇥. In the short di↵erential notation used before, the disintegrations can

be written as:
⇡Y⇥⇥(dy, d✓) = ⇡⇥(d✓)⇡Y |⇥(dy|✓)

⇡Y⇥⇥(dy, d✓) = ⇡Y (dy)⇡⇥|Y (d✓|y).
(1.26)
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While the first disintegration is known by construction of the model, the second one is unknown. Nei-

ther the marginal distribution ⇡Y over the observation space, nor the so called posterior distribution

⇡⇥|Y over parameter space are available. The equations (1.26), however, imply the identity:

⇡Y (dy)⇡⇥|Y (d✓|y) = ⇡⇥(d✓)⇡Y |⇥(dy|✓) =)
⇡⇥|Y (d✓|y)
⇡⇥(d✓)

=
⇡Y |⇥(dy|✓)
⇡Y (dy)

=: f(y, ✓). (1.27)

This expresses the equality of the Radon-Nikodym derivatives of the conditional distributions w.r.t.

the marginal distributions on each component space. The application of Bayes’ rule can be thought

of as a transformation of the prior distribution ⇡⇥ into the posterior distribution ⇡⇥|Y . The posterior

distribution has again a corresponding push-forward ⇡S|Y = ⇡⇥|Y �P�1 along the parameterization,

which captures the data-informed a posteriori beliefs about how likely the di↵erent model config-

urations are. The transformation interpretation becomes apparent, when considering the following

simple rearrangement of (1.27):

⇡⇥|Y (d✓|y) =
⇡Y |⇥(dy|✓)
⇡Y (dy)

⇡⇥(d✓) = f(y, ✓)⇡⇥(d✓). (1.28)

The Radon-Nikodym derivative f intuitively corrects the prior into the posterior distribution based

on the observed data y 2 Y . The function is, however, only partially known because of ⇡Y (dy) and

is thus also not directly accessible.

Given some base measures on (Y,BY ) and (⇥,B⇥), the equality of the Radon-Nikodym derivatives

in (1.27) implies the same for the corresponding probability density ratios:

p(✓|y)
p(✓)

=
p(y|✓)
p(y)

. (1.29)

The reason this is true, is that the base measure obviously cancels out when considering ratios of

densities. Bayes’ rule in terms of densities is then usually put in the form (Gelman et al., 2013):

p(✓|y) = p(y|✓)
p(y)

p(✓). (1.30)

1.3.3 Bayesian Inference and Expectations

In Bayesian inference, the idea is to apply Bayes’ rule in order to infer the posterior distribution

over model configuration space. That is, the goal is to update the prior distribution, informed by

the observed dataset. In general the benefit of Bayesian inference is that the posterior distribution

provides more information than a simple point estimate for the model parameters obtained from the

maximum likelihood or the related maximum a posteriori approach. It allows for the quantification

of uncertainties about the parameter values, for example, summarized via so called credible regions

or, more specifically, highest density regions (Gelman et al., 2013).
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Just as in parameter inference for classical statistical models, Bayes’ rule generalizes straightfor-

wardly from single observations y 2 Y to complete datasets D 2 Y
N . With the typical assumption of

all samples being independently drawn from the same underlying distribution, any Bayesian model

on (Y ⇥⇥,BY ⌦ B⇥) induces a unique Bayesian model on (Y N ⇥⇥,BY N ⌦ B⇥) according to:

⇡Y N⇥⇥(dD, d✓) = ⇡⇥(d✓)⇡Y N |⇥(dD|✓) = ⇡⇥(d✓)
NO

i=1

⇡Y |⇥(dyi|✓). (1.31)

Bayes’ rule then takes the form:

⇡⇥|Y N (d✓|D) =
⇡Y N |⇥(dD|✓)
⇡Y N (dD)

⇡⇥(d✓) =
p(D|✓)
p(D)

⇡⇥(d✓) (1.32)

Noting that the dataset D is fixed for any given Bayesian inference problem it is obvious that the

so called model evidence p(D), i.e., the probability density of the data under the defined model,

is just a constant. Moreover, the conditional density of the data p(D|✓) can be considered only

a function of the parameters, which is sometimes emphasized by calling it the likelihood function

denoted by LD(✓) := p(D|✓). Those observations allow to consider a Bayesian model, in the context

of a particular inference problem, not to be a joint distribution over observation and parameter

space, but an unnormalized finite measure µ
D

⇥(d✓) = LD(✓)⇡⇥(d✓) over parameter space. In fact,

this measure is equal to the posterior distribution up to normalization with constant Z := p(D).

This allows to formulate Bayes’ rule as:

⇡⇥|Y N (d✓|D) =
1

p(D)
LD(✓)⇡⇥(d✓) =

1

Z
µ
D

⇥(d✓). (1.33)

The normalizing constant, i.e., the model evidence, is however not easily accessible, since it requires

integration over the complete parameter space:

Z =

Z

⇥
µ
D

⇥(d✓) =

Z

⇥
LD(✓)⇡⇥(d✓) = E⇡⇥

⇥
LD(✓)

⇤
. (1.34)

This integral will be intractable in most cases, especially for high dimensional parameter spaces.

In particular, this indicates that in most practical cases there is no closed form solution for the

posterior distribution ⇡⇥|Y N (d✓|D) (Gelman et al., 2013).

To get a clear path towards a satisfying solution for the Bayesian inference problem, it is useful

to consider what the posterior is used for in practice. The distribution and its density are themselves

not easily interpreted, especially for high dimensional parameter spaces, so that it is necessary to

condense the information into summary statistics. Most relevant computations can therefore be

formulated in terms of an expectation of a measurable function f : ⇥ �! R w.r.t. the posterior
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distribution:

E⇡⇥|Y N [f ] (D) =

Z

⇥
f(✓)⇡⇥|Y N (d✓|D) =

Z

⇥
f(✓)p(✓|D)d✓. (1.35)

The moments of the posterior distribution, for example, provide information about its structure and

can be computed according to:

E⇡⇥|Y N [✓n] (D) =

Z

⇥
✓
n
⇡⇥|Y N (d✓|D) =

Z

⇥
✓
n
p(✓|D)d✓. (1.36)

Making predictions about the probability of new data ỹ 2 Y in the Bayesian framework can be

formulated as:

E⇡⇥|Y N

⇥
p(ỹ|✓)

⇤
(D) =

Z

⇥
p(ỹ|✓)⇡⇥|Y N (d✓|D) =

Z

⇥
p(ỹ|✓)p(✓|D)d✓. (1.37)

Intuitively therefore, the idea of the Bayesian framework is to compute averages over all possible

model configurations, which are weighted according to the posterior distribution, while the classical

approach provides a single final model configuration as a solution. The integrals involved in comput-

ing those averages, however, will usually neither have closed form solutions, nor will they be easily

evaluated numerically because of the possibly high dimension of the parameter space. Bayesian in-

ference thus e↵ectively reduces to the general integration problem, which is one of the main subjects

of numerical mathematics (Gelman et al., 2013; Betancourt, 2019).

1.3.4 Approximating Expectations with Samples

The Monte Carlo method provides an e�cient approach to approximate expectations of measurable

function f : ⇥ �! R like those mentioned in the previous subsection 1.3.3. It is based on evaluating

f on exact samples (✓1, ✓2, ..., ✓N ) from the distribution w.r.t. which the expectation is evaluated, in

this case the posterior ⇡⇥|Y N (Bishop, 2006; Betancourt, 2018b):

f̂
MC

N
=

1

N

NX

n=1

f(✓n) ⇡ E⇡⇥|Y N [f ] , ✓n ⇠ ⇡⇥|Y N . (1.38)

As covered in the introductory section 1.1.6 on representing distributions with samples, this is

a consistent estimator, due to the evaluation points being samples of the relevant distribution.

Moreover, this estimator has particularly nice convergence guarantees due to the samples being

exact. In practice therefore, it seems su�cient to be able to generate samples from the posterior

distribution to allow for e�cient evaluation of expectations of interest. The closer those samples are

to being exact, the better the convergence of the estimator (Betancourt, 2019).

Fitting a Bayesian model to data can thus be interpreted to be about finding a way to generate

posterior samples. The problem of generating samples from distributions however, is itself not
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a trivial one, even if the density is available in a closed form. Note that this thesis will take

the developed algorithms for practically exact sampling from distributions with standard density

representations for granted. Such standard densities are, for example, the uniform density or those

belonging to the exponential family.

Usually the prior distribution in the construction of a Bayesian model is defined by such a

standard density w.r.t. the chosen parameterization. If this is the case, the model evidence p(D) =

E⇡⇥

⇥
LD(✓)

⇤
, i.e., the relevant normalizing constant in Bayes’ rule, can be approximated e�ciently

via samples from the prior distribution. Even with such an approximation, however, Bayes’ rule

only allows for the evaluation of the posterior distribution or the corresponding density, not the

generation of posterior samples, which are required for e�cient approximation of the expectations

of interest.

1.3.5 Sampling Methods vs. Variational Methods

There are two prominent approaches to resolve the Bayesian inference problem. They will be referred

to as the sampling and the variational approach, respectively (Blei et al., 2017).

Sampling methods rely on generating posterior samples directly based on the information con-

tained in the unnormalized finite measure µ
D

⇥ representing the Bayesian model. It is trivial to see

that this measure has to contain all the necessary information to be able to generate samples from

the posterior distribution. This approach will be introduced in some more detail in the next Section

1.4.

Variational methods on the other hand take the same approach that underlies classical statistical

modeling itself. The idea is to define a family of density functions corresponding to distributions

on the parameter space. This is usually called the variational family. The goal then is to find the

member of that family, which is closest to representing the true posterior distribution according to

some measure of divergence. The variational approach will be described in much more detail in

Chapter 2.

A notable di↵erence between sampling and variational methods is that the variational approach

actually yields an e↵ectively closed form approximation to the posterior, which can not only be used

to generate approximate posterior samples, but also to evaluate posterior densities. Sampling meth-

ods only produce posterior samples and require additional methods like kernel density estimation to

approximate posterior densities based on those samples.

1.4 Sampling Methods - State of the Art

Sampling methods, in particular so called Markov Chain Monte Carlo methods, are the state of

the art approach to solving the Bayesian inference problem (Gelman et al., 2013). As mentioned
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in the previous section, they generate samples from the posterior based on the information con-

tained in the Bayesian model, which can be considered an unnormalized version of the posterior

distribution. This section will briefly introduce naive sampling approaches and the more advanced

Markov Chain Monte Carlo methods with the objective of highlighting the benefits and drawbacks

of the current powerhouse of Bayesian inference. These considerations will elucidate the need for

variational methods.

The goal of any sampling method is to generate samples from a target distribution ⇡Q over

some generic measurable space (Q,BQ), where BQ is the Borel �-algebra, induced by the underlying

topology on this space. In the Bayesian inference context this is the posterior distribution ⇡⇥|Y N

over a parameter space (⇥,B⇥).
What makes those approaches feasible for Bayesian inference is that they only require knowl-

edge of the target distribution up to normalization. That is, it is su�cient to have access to the

corresponding unnormalized target measure µQ = Z⇡Q with Z 2 R+, which corresponds to the

Bayesian model µD

⇥(d✓) = LD(✓)⇡⇥(d✓) interpreted as an unnormalized measure over the parameter

space. They could, however, just as well be applied to the problem of sampling from any complex

distribution that can be evaluated up to a normalizing constant (Bishop, 2006; Gelman et al., 2013).

Most sampling approaches rely on an auxiliary distribution ⌘Q over the same space. This distri-

bution is usually defined by some standard density function h(q) for which exact sampling procedures

are available.

1.4.1 Naive Sampling Approaches

There are two naive sampling approaches worth mentioning, both of which are explained in detail by

Gelman et al. (2013) and Bishop (2006). The first one is called importance sampling. This method

is special in the sense that it does not explicitly generate samples from the target distribution,

but allows for immediate evaluation of expectations of functions f : Q �! R w.r.t. the target

distribution. This is achieved by reformulating the expectation of interest with a change of measure

to the auxiliary distribution:

E⇡Q [f ] =

Z

Q

f(q)⇡Q(dq) =

Z

Q

f(q)
d⇡Q

d⌘Q
(q)⌘Q(dq) = E⌘Q

"
d⇡Q

d⌘Q
· f
#
, (1.39)

which requires the auxiliary distribution to be chosen such that the target distribution is absolutely

continuous w.r.t. it. If ⇡Q is not accessible directly, but only through the unnormalized measure

µQ, this can be accounted for by also approximating the normalization constant Z via a change of

measure. It is obvious that the expectation then takes the form:

E⇡Q [f ] = E⌘Q

"
1

Z
· dµQ

d⌘Q
· f
#
⇡ 1

N

NX

n=1

1

Z

dµQ

d⌘Q
(qn)f(qn) qn ⇠ ⌘Q, (1.40)
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while the constant Z is just:

Z =

Z

Q

µQ(dq) =

Z

Q

dµQ

d⌘Q
⌘Q(dq) = E⌘Q

"
dµQ

d⌘Q

#
⇡ 1

N

NX

n=1

dµQ

d⌘Q
(qn) qn ⇠ ⌘Q. (1.41)

The Radon-Nikodym derivative of µQ w.r.t. ⌘Q can be called the importance function, which returns

a so called importance weight for each sample qn ⇠ ⌘Q. Those weights account for the fact that the

expectation is computed w.r.t. the auxiliary distribution. Samples from neighborhoods which are

assigned much more probability mass by the auxiliary distribution than by the target distribution,

will have very little impact on the expectation. It is noteworthy however, that all the generated

samples are used in the approximation and if the target and auxiliary distribution are equal, this

approach reduces to Monte Carlo approximation.

In the rejection sampling method the idea is somewhat similar. To generate samples from the

target distribution, this approach first generates samples from the auxiliary distribution and rejects

those with small importance weights with correspondingly high probability. The details are not

important for the following considerations. Note however, that the samples produced by rejection

sampling are exact samples from the target distribution, because they are generated independent of

each other, which allows to use Monte Carlo approximation to evaluate expectations of interest.

Finally, it is apparent that the introduced naive sampling approaches become ine�cient rather

quickly, if the chosen auxiliary distribution is not su�ciently similar to the target distribution. In

the case of importance sampling this is reflected in small weights for a large number of samples,

whereas in rejection sampling it results in a large number of samples being rejected. In practice,

it is usually hard to find appropriate auxiliary distributions especially for the Bayesian inference

problem of complex models.

1.4.2 Markov Chain Monte Carlo Methods

It is clear from the Monte Carlo method introduced earlier, that exact samples are the holy grail for

e�cient approximation of expectations w.r.t. some target distribution ⇡Q. Since methods for gener-

ating exact posterior samples are, however, extremely costly, Markov chain Monte Carlo (MCMC)

methods settle for the next best thing. In particular, they explore the idea of generating close to

exact samples, more specifically, samples from a Markov chain. This section is mostly based on

Betancourt et al. (2014), which not only provides a summary of the theory of Markov Chain Monte

Carlo methods, but in particular a geometric analysis of the state of the art Hamiltonian Monte

Carlo method.

In Subsection 1.1.3, Markov kernels were introduced as probability kernels from a measurable

space (Q,BQ) to itself. Just as any other transition kernel, a Markov kernel T : Q ⇥ BQ �! [0, 1]

can push forward a probability distribution. This operation can be considered a map from the space
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of probability distributions on (Q,BQ) onto itself, defined by:

⌧ : ⇧(Q) �! ⇧(Q), $Q 7�! ($QT )( · ) =
Z

Q

T (q, · )$(dq). (1.42)

This is usually called the Markov transition defined by the Markov kernel. A Markov chain thus is a

sequence of probability distributions ($1
Q
,$

2
Q
, ...$

N

Q
), generated from some initial distribution $1

Q
,

by repeated application of a Markov transition. Samples from a Markov chain are then a sequence

(q1, q2, ...qN ) with qi ⇠ $
i

Q
. Since two successive distributions are related through the application

of the Markov transition, the samples can be generated via ancestral sampling according to:

q1 ⇠ $1
Q

qn ⇠ T (qn�1, · ),
(1.43)

where T (qn�1, · ) defines a probability distribution over (Q,BQ) at qn�1 2 Q. If $Q = $QT holds

for some probability distribution, then the Markov kernel and the corresponding transition are said

to preserve this distribution and $Q is referred to as a stationary distribution w.r.t. this kernel.

To generate samples from the target distribution ⇡Q, the idea is to define a transition kernel T
that preserves it, i.e., ⇡Q = ⇡QT . Then most of the distributions in the generated Markov chain will

eventually be su�ciently close to the target distribution and yield the desired samples. Those will,

however, not be independent but correlated to some extend. The degree of correlation of successive

samples can be quantified by the autocorrelation of the Markov chain, the details of which will not

be covered here.

This approach allows for more e�cient but sequential generation of samples, while sacrificing

some of the convergence speed of the corresponding MCMC-estimator of expectations of functions

f : Q �! R w.r.t. the target distribution:

f̂
MCMC

N
(q1) =

1

N

NX

n=1

f(qn), (1.44)

where the evaluation points (q1, q2, ...qN ) are the samples from a generated Markov chain.

Any particular MCMC method is therefore defined by some Markov transition kernel that pre-

serves the target distribution. The construction of such kernels is, however, not trivial. In particular,

the goal is to find kernels which generate Markov chains that e�ciently explore the space of proba-

bility distributions as to find the target distribution quickly, while minimizing the autocorrelation.

The well known Gaussian Random Walk Metropolis kernel is a simple example that can be explicitly

constructed via conditional densities. For more complex target distributions and high dimensional

spaces Q, however, it yields only di↵use local exploration of ⇧(Q) in finite time.

A more natural way of constructing Markov kernels is to make use of automorphisms on the
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measure space (Q,BQ,⇡Q), that is, continuous measure preserving bijections g : Q �! Q. The

idea here is to define a family � of such maps, all of which preserve the target distribution, i.e.,

⇡Q = ⇡Q � g�1 8g 2 �. With the choice of a �-algebra and a probability measure they form a

probability space (�,⌃�, �), which induces a Markov kernel according to:

T (q, A) :=

Z

�
IA(g(q))�(dg) q 2 Q,A 2 BQ, (1.45)

where IA is the indicator function for the set A. This kernel, and thus the induced transition, will

then preserve the target distribution, because it is the convolution of maps that preserve it. The

Gaussian Random Walk Metropolis kernel, for example, can be constructed from random indepen-

dent translation on Q.

To ensure e�cient exploration of ⇧(Q) and small autocorrelation of the resulting Markov chains,

a more coherent and less di↵use behavior of the chosen family of automorphisms is required. Flows

potentially fulfill those requirements and provide the foundation for the Hamiltonian Monte Carlo

(HMC) method.

A flow on a Space Q is a group action of the additive group of the real numbers on that space.

That is, it is a family of automorphisms �t : Q �! Q parameterized by a real parameter t 2 R,
which is often interpreted as time, with the following properties:

�r � �s = �r+s

�
�1
t

= ��t

�0 = IdQ.

(1.46)

Since the inversion of a flow is only achieved by inversion of the time parameter, increasing the

parameter will coherently push away the points q 2 Q from their initial positions and Markov chains

constructed on their basis will, in turn, yield e�cient exploration of ⇧(Q) with small autocorrelation.

The HMC method provides a canonical way of constructing such flows �H
t
, called Hamiltonian

flows, on the cotangent bundle T
⇤
Q of the space Q. The notion of a cotangent bundle will not be

discussed in detail, but it should be noted that it requires (Q,BQ) to be at least a di↵erentiable

manifold.

In principle, the HMC method utilizes Hamiltonian dynamics to generate a Markov chain, which,

by construction of the respective Hamiltonian, preserves the target distribution. The method is

covered in detail by (Betancourt et al., 2014) and on a more intuitive level by (Betancourt, 2017a;

Neal, 2011; Gelman et al., 2013; Bishop, 2006). Although the details of the exact implementation

are beyond the scope of this thesis, Hamiltonian systems and flows will be reviewed in a simplified

version in chapter 4, when introducing Hamiltonian normalizing flows.
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1.4.3 Benefits and Drawbacks

Markov chain Monte Carlo methods provide a coherent approach to solving the Bayesian inference

problem by generating correlated posterior samples. A major benefit are the theoretic convergence

guarantees of MCMC estimators for approximating expectations. Although the convergence speed

su↵ers due to the samples not being exact samples of the posterior distribution, they are still a

significant improvement to naive sampling approaches which try to generate independent posterior

samples at prohibitively high costs.

The Hamiltonian Monte Carlo method is the state of the art sampling method and provides a

theoretically e�cient approach to explore the space of distributions and minimize the autocorrela-

tion of the generated Markov chain and corresponding samples. Even though the HMC method and

its more sophisticated extensions (Ho↵man & Gelman, 2011; Girolami & Calderhead, 2011) provide

some significant improvements, they also increase the computation costs per transition and gener-

ating posterior samples remains costly. Note that the costs per transition, in particular, strongly

depend on the size of the dataset, since the unnormalized target measure, i.e., the corresponding

density, has to be evaluated on each transition. In case of the HMC method, this increases to one

evaluation of the density for each integration step in the simulation of the Hamiltonian dynam-

ics. They also introduce hyperparameters1 that need to be tuned to every individual problem via

sophisticated techniques.

Note also, that MCMC method are not parallelizable, because the samples are generated se-

quentially and each sample depends on the previous one by design. Although it is possible to run

multiple chains in parallel, which is obviously useful, even a single chain may incur prohibitively

high computational cost.

1.5 Thesis Goals and Structure

The subject of this thesis will be variational Bayesian inference, in particular, the application of

so called normalizing flows for this purpose. More specifically, after this introductory review of

the relevant theory regarding Bayesian inference and a brief discussion of sampling methods, the

following chapters will lead up to Hamiltonian normalizing flows, which were first introduced by

Toth et al. (2019) in the context of density estimation.

Chapter 2 will provide a precise formulation of the variational inference approach as an op-

timization problem, the goal of which is to minimizes the divergence between the members of a

variational family to some target distribution. Variational Bayesian inference then is variational

inference applied to the Bayesian inference problem with the posterior as the target distribution.

Normalizing flows are introduced in Chapter 3. After briefly noting the more general domains of

application for normalizing flows they are discussed in the context of variational Bayesian inference.

1
A mass matrix M, integration time L and time step size ✏ for computing the Hamiltonian dynamics
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As a particularly interesting example, residual flows will be highlighted. The limiting case of com-

positions of infinitely many residual flows leads to the notion of so called continuous normalizing

flows.

Chapter 4 will first summarize the Hamiltonian formalism of classical mechanics, specifically the

notion of a phase space and Hamiltonian flows on it, before discussing Hamiltonian normalizing

flows as a special instance of continuous normalizing flows.

In the context of this thesis, a software package for the purpose of Bayesian inference is devel-

oped, utilizing TensorFlow Probability (Dillon et al., 2017). Although there are already many such

frameworks available, this one focuses on providing a flexible way of defining normalizing flows to be

used in the context of variational Bayesian inference. The package will be used to apply Hamiltonian

normalizing flows to selected Bayesian inference problems in Chapter 5. To verify and evaluate the

results, they are compared to those from the state of the art Hamiltonian Monte Carlo method. The

goal is to qualitatively show that Hamiltonian normalizing flows can be used for variational Bayesian

inference.

Finally, Chapter 6 will present a conclusion regarding the application of Hamiltonian normalizing

flows for the purpose of Bayesian inference. This will be accompanied by a discussion of the potentials

of this approach and prospects for future research.



Chapter 2

Variational Inference

As eluded to in the introduction, variational inference follows the philosophy of classical statistical

modeling by selecting a so called variational family of distributions, that is a subset � ✓ ⇧(Q) of

the distributions over a measurable space (Q,BQ) of interest. The idea is to find the member of

this family �† 2 �, that is closest to a target distribution ⇡Q 2 ⇧(Q) according to some measure

of divergence D. Note that, in the literature (compare for example Blei et al. (2017), C. Zhang et

al. (2017), Ho↵man et al. (2013) and Ranganath et al. (2013)), variational inference is commonly

restricted to refer to variational Bayesian inference in particular. This thesis, however, will consider

variational inference from a more general perspective. In some sense, it can be thought of as

generalizing the maximum likelihood approach underlying classical parameter inference, such that

it is applicable to the Bayesian inference problem as well.

2.1 Variational Inference as Optimization

The variational inference approach can be formulated as an optimization task, specifically, as the

problem of minimizing a divergence measure between a variational family and a target distribution.

To understand this in detail it is necessary to briefly introduce divergences, before discussing the

optimization problem itself.

2.1.1 Divergences

Divergences are measures of distance between probability distributions. They are, however, a weaker

notion than that of a metric, since they are not necessarily symmetric nor do they have to satisfy

the triangle inequality. More specifically, a divergence on ⇧(Q) is a map D : ⇧(Q) ⇥ ⇧(Q) �! R,

23
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mapping any two probability distributions onto the non-negative real numbers, where:

D(⇡||�) � 0 8⇡, � 2 ⇧(Q) (2.1)

and:

D(⇡||�) = 0 () ⇡ = � ⇡, � 2 ⇧(Q). (2.2)

In other words, a divergence between two distributions is zero if and only if they are the same and

positive otherwise. To emphasize the asymmetry of a divergence D(⇡||�), it is usually read as the

’divergence of ⇡ from �’.

There is a particularly interesting class of divergences called f -divergences (Ali & Silvey, 1966;

Amari, 2009). They are of the general form:

Df (⇡||�) := E�

f � d⇡

d�

�
=

Z

Q

✓
f � d⇡

d�

◆
(q)�(dq) ⇡, � 2 ⇧(Q) (2.3)

for any convex function f : R �! R with f(1) = 0, which ensures Df (⇡||�) = 0 if and only if ⇡ and

� are equal. Note that all f -divergences can immediately be interpreted as an expectation w.r.t. the

second argument, while a change of measure allows to express it as an expectation w.r.t. the first

argument:

Df (⇡||�) := E�

f � d⇡

d�

�
= E⇡


d�

d⇡
· f � d⇡

d�

�
. (2.4)

A mathematically convenient member of those f -divergences is the Kullback-Leibler (KL) divergence

DKL defined by:

DKL(⇡||�) := E�

"
d⇡

d�
·
✓
log �d⇡

d�

◆#
=

Z

Q

d⇡

d�
(q)

✓
log �d⇡

d�

◆
(q)�(dq), (2.5)

where obviously f(u) = u log u. Using a change of measure, the usual form of the KL-divergence is

recovered as:

DKL(⇡||�) = E�

"
d⇡

d�
·
✓
log �d⇡

d�

◆#
= E⇡


log �d⇡

d�

�
= �E⇡


log �d�

d⇡

�
=: D⇤

KL
(�||⇡). (2.6)

For the sake of completeness it is interesting to note that this form actually corresponds to the dual

KL-divergence D⇤
KL

, which is itself an f -divergence with f(u) = � log u. More generally, for each

divergence D, the map D⇤ with D⇤(�||⇡) = D(⇡||�) is called its dual.

The usual form of the KL-divergence emphasizes its interpretation as relative entropy (Bishop,

2006). Note that, as opposed to entropy, it is a structure defined on the space of distributions. The
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(di↵erential) entropy of a distribution ⇡ only exists w.r.t. some base measure �:

H
✓
d⇡

d�

◆
:= �E⇡


log �d⇡

d�

�
. (2.7)

That is, entropy is only defined for densities or, more typically, for random variables with a particular

associated density (Bishop, 2006).

The use of the KL-divergence for the purpose of variational inference is pervasive (Blei et al.,

2017; C. Zhang et al., 2017; Ho↵man et al., 2013; Ranganath et al., 2013). The reason is mostly

that the logarithm is a group homomorphism from the multiplicative to the additive group of the

real numbers and very small values are mapped to large negative values. Both properties are

highly advantageous for actual numerical computations involving probabilities, which in practice

often come down to multiplication of a large number of small values leading to underflow problems.

Those problems can generally be avoided in the logarithmic domain.

2.1.2 The General Optimization Problem

The term variational inference is used in reference to the calculus of variations, which covers opti-

mization of real functionals, that is, maps from a space of functions to the real numbers (Bishop,

2006). Since the target distribution ⇡Q 2 ⇧(Q) in variational inference is fixed, any divergence

D : ⇧(Q)⇥⇧(Q) �! R defines two functionals:

D(⇡Q|| · ) : ⇧(Q) �! R, $ 7! D(⇡Q||$),

D( · ||⇡Q) : ⇧(Q) �! R, $ 7! D($||⇡Q).
(2.8)

Because of the asymmetry of divergences they are obviously not equivalent and therefore suggest two

possible optimization problems associated with a divergence choice. Both functionals by construction

assign a non-negative real number to each distribution $ 2 ⇧(Q). Naively, finding the target

distribution in the space of all distributions on the relevant space simply requires searching for the

element $† 2 ⇧(Q) for which D(⇡Q||$†) = D($†||⇡Q) = 0. Then, according to the properties of

divergences, it is apparent that $† = ⇡Q. Minimization of either functional over the total space of

distributions thus amounts to exact inference, since the target distribution necessarily is contained

in ⇧(Q).

Just as in the case of classical statistical inference, however, this optimization problem is typically

intractable. The remedy again is to choose an appropriate subset � ✓ ⇧(Q), called the variational

family, which is su�ciently small or has a convenient structure as to ensure tractability of the

optimization problem. Variational inference then reduces to approximate inference, since there is

no guarantee that the target distribution is contained in the selected variational family. With this

restriction, the goal is to find the member �†
Q
2 � that minimizes the functional of interest and is
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in this sense closest to the target distribution.

For the reasons eluded to in the previous subsection, the following discussion will restrict to

the KL-divergence. Since evaluating the functionals associated with the KL-divergence, or any f -

divergence for that matter, requires approximation of an expectation, it is useful to distinguish the

cases in which samples of the target distribution are either accessible or not.

If the goal is to fit a variational family to an assumed true underlying distribution of a dataset,

then this dataset by assumption constitutes samples from the target distribution. In this case the

natural choice of functional is DKL(⇡Q|| · ), such that the optimization problem is put in terms of

an expectation w.r.t. the target distribution. The goal then is to find �†
Q
2 � such that:

�
†
Q
:= argmin

�Q2�
DKL(⇡Q||�Q) = argmin

�Q2�
�E⇡Q

"
log �d�Q

d⇡Q

#
. (2.9)

As a convention it is useful to follow Papamakarios et al. (2019) and call DKL(⇡Q|| · ) the forward

KL-divergence, where the target distribution is in the first argument. For a choice of base measure

�, this can easily be shown to be equivalent to the maximum likelihood approach introduced in

Subsection 1.2.4. To illustrate this, see how the KL-divergence can be deconstructed into:

DKL(⇡Q||�Q) = �E⇡Q

"
log �d�Q

d⇡Q

#

= �E⇡Q

2

4log �
 
d�Q

d�
· d�

d⇡Q

!3

5

= �E⇡Q


log �d�Q

d�

�
+ E⇡Q


log �d⇡Q

d�

�

= �E⇡Q


log �d�Q

d�

�
�H

✓
d⇡Q

d�

◆
.

(2.10)

Since the entropy of the density of a fixed distribution is just a constant, it can be ignored for the

purpose of optimization. Moreover, the expectation term can be approximated using the Monte

Carlo method with the target distribution’s samples contained in the dataset:

� E⇡Q


log �d�Q

d�

�
⇡ � 1

N

NX

n=1

✓
log �d�Q

d�

◆
(qn) with qn ⇠ ⇡Q. (2.11)

Since the Radon-Nikodym derivative is the density of the variational family member, minimizing the

term within the family is equivalent to finding the member that maximizes the probability density

of the data, which is exactly the maximum likelihood approach.

If, on the other hand, the goal is to apply variational inference in the context of Bayesian

inference, then samples of the target distribution, i.e. the posterior, are obviously not available. In
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this case it is convenient to choose the functional DKL( · ||⇡Q), putting the optimization problem in

terms of an expectation w.r.t. the variational family members, which are usually chosen such that

samples can be easily generated. The goal then is to find �†
Q
2 �, such that:

�
†
Q
:= argmin

�Q2�
DKL(�Q||⇡Q) = argmin

�Q2�
�E�Q

"
log �d⇡Q

d�Q

#
, (2.12)

where DKL( · ||⇡Q) is called the reverse KL-divergence (Papamakarios et al., 2019), with the target

distribution in the second argument. Applying variational inference to solve the Bayesian inference

problem is discussed in more detail in Section 2.2.

2.1.3 Choosing a Variational Family

In practice, an important question is how to choose an appropriate variational family � ✓ ⇧(Q).

In the best case � covers a large number of di↵erent distributions, that is, it is a particularly rich

family of distributions, for which the optimization remains tractable (Bishop, 2006).

Generally, optimization over a space of functions is impractical. The usual approach therefore

is to choose a parameterization for the set �, such that it can be associated with some variational

parameter space  ✓ Rr for r 2 N. This allows to select a variational family associated with a family

of density functions q (q) := q(q; ) 8 2  over the underlying space Q. For clarity, any member

of the variational family will be indexed with the associated variational parameter, i.e. � 
Q
2 � is

the distribution represented by q
 (q) w.r.t. some fixed base measure.

As a very simple example, a Gaussian or any other standard family of density functions can be

used to define a variational family. Another prominent approach is called mean-field approximation,

where the variational family is chosen to be the set of all factorizable distributions, that is, their

multivariate densities factorize completely into univariate densities. Since this set is not readily

usable in black box variational inference approaches, there is usually an additional assumption

about the density of the component distributions w.r.t. some base measure. The variational family

will thus usually consist of all factorizable distributions, where the components can, for example,

all be represented via univariate Gaussian densities. This is obviously a smaller family than that of

the distributions with multivariate Gaussian density representation, typically leading to worse but

computationally more e�cient approximations (Bishop, 2006; Blei et al., 2017; Kucukelbir et al.,

2016).

Note that those examples are all variants of the same idea - utilizing standard families of density

functions to define variational families. There are, however, other approaches to define variational

families, one of which makes use of normalizing flows and will be discussed in Chapter 3.

If the variational family is assumed to have a fixed structure, e.g., by being defined via a family

of density functions q
 (q) in some parameterization, the forward and reverse KL-divergence can



28 CHAPTER 2. VARIATIONAL INFERENCE

be considered just functions of the variational parameters, instead of functionals of the variational

family members. The optimization problems can then be reformulated as:

 
† := argmin

 2 
DKL(⇡Q||� Q) = argmin

 2 
�E⇡Q

2

4log
d�

 

Q

d⇡Q

3

5 ,

 
† := argmin

 2 
DKL(�

 

Q
||⇡Q) = argmin

 2 
�E

�
 
Q

2

4log d⇡Q

d�
 

Q

3

5 ,

(2.13)

where the solution  
† corresponds to the associated distribution �

†
Q

:= �
 

†

Q
, which is the closest

match to the target distribution within the chosen family.

2.2 Variational Bayesian Inference

In variational Bayesian inference, the relevant measurable space is the parameter space (⇥,B⇥)
associated with some parameterization of the model configuration space S ✓ ⇧(Y ). The tar-

get distribution in this context is the posterior ⇡⇥|Y N , whereas the unnormalized target measure

µ
D

⇥(d✓) = Z⇡⇥|Y N (d✓) corresponds to the Bayesian model µD

⇥(d✓) = LD(✓)⇡⇥(d✓) interpreted as an

unnormalized measure over the parameter space. Recall that ⇡⇥ is the prior distribution, LD the

likelihood function and the constant Z is the so called model evidence p(D), the computation of

which is usually intractable.

A variational family �, in this context, is a subset of the distributions over the parameter space,

i.e., � ✓ ⇧(⇥). As described in the previous section, the reverse KL-divergence DKL( · ||⇡⇥|Y N ) is

the typical choice of functional to consider for optimization in variational Bayesian inference:

�
†
⇥ := argmin

�⇥2�
DKL(�⇥||⇡⇥|Y N ) = argmin

�⇥2�
�E�⇥

"
log �

d⇡⇥|Y N

d�⇥

#
. (2.14)

It becomes clear immediately that minimizing the reverse KL-divergence is not possible, because it

cannot be evaluated without access to the posterior distribution and its density. This is the same

fundamental problem as encountered in sampling approaches, and again the solution is to notice

that it is su�cient to have access to the unnormalized target measure µ
D

⇥ (Blei et al., 2017).
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2.2.1 Variational Free Energy

With the above observations about the target distribution, the reverse KL-divergence of a variational

family member from the posterior distribution can be rewritten as:

DKL(�⇥||⇡⇥|Y N ) = �E�⇥

"
log �

d⇡⇥|Y N

d�⇥

#

= �E�⇥

2

4log �
 
d⇡⇥|Y N

dµ
D

⇥

· dµ
D

⇥

d�⇥

!3

5

= �E�⇥

2

4log �
 

1

Z
· dµ

D

⇥

d�⇥

!3

5

= �E�⇥

"
log �dµ

D

⇥

d�⇥

#
+ logZ

= F⇡⇥,LD (�⇥) + logZ

(2.15)

The term F(�⇥) := F⇡⇥,LD (�⇥) is usually called the variational free energy in an analogy to statisti-

cal physics, which will not be discussed further. It can be assumed to only depend on the variational

family member �⇥, since the prior ⇡⇥ and the likelihood LD are fixed for any given Bayesian infer-

ence problem as they define the Bayesian model. Similar to the reverse KL-divergence, it is therefore

a functional of the variational family members, but can readily be evaluated with the information

provided by the model. Since the normalization constant Z turns out to be irrelevant from an

optimization perspective, the optimization problem can be reformulated as:

�
†
⇥ : = argmin

�⇥2�
DKL(�⇥||⇡⇥|Y N )

= argmin
�⇥2�

F(�⇥)

= argmin
�⇥2�

�E�⇥

"
log �dµ

D

⇥

d�⇥

#
(2.16)

In much of the literature the term Evidence Lower BOund (ELBO) is used to refer to the

negative variational free energy (Blei et al., 2017; C. Zhang et al., 2017; Rezende & Mohamed,

2015). This terminology is easily understood by recognizing that the constant Z corresponds to the

model evidence, while:

� F(�⇥) = logZ �DKL(�⇥||⇡⇥|Y N ), (2.17)

following from equation (2.15), and the non-negativity of divergences, imply that �F(�⇥) is a tight

lower bound for the log model evidence. It is a tight bound in the sense that it is equal to the log

model evidence only in case the variational family member is equal to the posterior distribution. It
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is trivial to see that minimizing the variational free energy is equivalent to maximizing the ELBO.

To gain a deeper understanding of what it means to minimize the variational free energy, it can

be decomposed further according to:

F(�⇥) = �E�⇥

"
log �dµ

D

⇥

d�⇥

#

= �E�⇥

2

4log �
 
dµ

D

⇥

d⇡⇥
· d⇡⇥
d�⇥

!3

5

= �E�⇥

"
log �

✓
LD · d⇡⇥

d�⇥

◆#

= �E�⇥

log �d⇡⇥

d�⇥

�
� E�⇥ [log �LD]

= DKL(�⇥||⇡⇥)� E�⇥ [log �LD] .

(2.18)

By inspection, it is clear that minimizing the expected negative log likelihood �E�⇥ [log �LD]

is equivalent to finding the variational family member that maximizes the expected probability

of the data. The term DKL(�⇥||⇡⇥) on the other hand has a regularizing e↵ect, penalizing strong

divergence of the variational family member from the prior distribution. The latter can be interpreted

as a version of Occam’s razor (Baker, 2016), where a parsimonious choice of variational family

member as an approximation to the posterior is preferred. Parsimonious in this context is to be

understood as preferring posterior beliefs that only moderately deviate from the prior assumptions.



Chapter 3

Normalizing Flows

This chapter introduces normalizing flows, which are the central subject of this thesis. After a brief

discussion of their general application in variational inference, the focus will again be on variational

Bayesian inference. In particular, their structure allows a reformulation of the variational free energy

introduced in the previous chapter. There are some challenges associated with the construction and

application of normalizing flows, which will be highlighted before focusing specifically on residual

flows. They will lead to the notion of continuous normalizing flows and form the foundation of the

Hamiltonian normalizing flows discussed in Chapter 4. The following sections are primarily based

on the extensive reviews provided by Kobyzev et al. (2019) and Papamakarios et al. (2019).

3.1 Normalizing Flows and Variational Families

As in the previous chapters, assume some target distribution ⇡Q on a generic measurable space

(Q,BQ), which in the Bayesian inference context again will be the posterior distribution over pa-

rameter space. Given the choice of some base distribution ⌘Z on another measurable space (Z,BZ),

the idea of normalizing flows is to construct a variational family:

�(⌘Z , f
 ) :=

n
⌘Z � (f )�1 |  2  ✓ Rr

o
✓ ⇧(Q) with f

 : Z �! Q (3.1)

as all the push-forwards of the base distribution along a parameterized family of isomorphisms, i.e.

continuous measurable bijective transformations f , which are colloquially referred to as normalizing

flows (Kobyzev et al., 2019). Flows in the strict mathematical sense, however, only play a role in the

particular case of continuous normalizing flows, which are introduced in Section 3.4. The variational

inference optimization problem here amounts to finding the flow parameters, for which the push-

forward of the base distribution most accurately corresponds to the target distribution.

31



32 CHAPTER 3. NORMALIZING FLOWS

3.1.1 Transformation of Samples

The construction of variational families from normalizing flows provides a convenient way of produc-

ing samples for their family members. Let the base distribution ⌘Z be defined by a standard density

function w.r.t. the base measure �Z , for which samples are easily generated. In practice, this will

typically be a Gaussian or uniform density. Since every member of the variational family �(⌘Z , f ),

induced by the normalizing flow f
 , is a push-forward distribution � 

Q
= ⌘Z � (f )�1, samples are

trivially produced by transforming samples from the base distribution (Papamakarios et al., 2019):

f
 (z) = q ⇠ � 

Q
z ⇠ ⌘Z . (3.2)

In particular, if the variational inference optimization problem is solved and the distribution �
†
Q

closest to the target ⇡Q is obtained, generating approximate samples for the target distribution is

as simple as applying the corresponding transformation to samples from the base distribution.

3.1.2 Transformation of Densities

Since in practice computations are done in the realm of densities, it is interesting to investigate how

exactly the density of the base distribution ⌘Z transforms under a particular continuous measurable

bijection f : Z �! Q. For this purpose let �Z and �Q be base measures on the spaces (Z,BZ)

and (Q,BQ), respectively. It is obvious from the definition of a push-forward distribution, that

the probability mass assigned by the base distribution ⌘Z to any measurable set U 2 BZ , will be

conserved under the transformation f :

Z

U✓Z

⌘Z(dz) =

Z

f(U)✓Q

⇣
⌘Z � f�1

⌘
(dq)

()
Z

U✓Z

h(z)�Z(dz) =

Z

f(U)✓Q

(h � f�1)(q)
⇣
�Z � f�1

⌘
(dq).

(3.3)

Here, h is the density of the base distribution w.r.t. �Z , while h � f�1 denotes the density of the

push-forward distribution w.r.t. the push-forward of �Z . Note that there is no guarantee for the

push-forward distribution to also have a density w.r.t. the base measure �Q on (Q,BQ).

Consider the case Q = Z = Rd for some d 2 N, where the base measures �Z = �Q correspond

to the Lebesgue measure on Rd. This allows to assume much more structure on Q and Z, in

particular a Euclidean vector space structure, such that it is possible to talk about di↵erentiable

maps between those spaces. If f : Z �! Q is now di↵erentiable in both directions, then it is called a

di↵eomorphism. At each point z 2 Z, the map f is locally approximated by a linear transformation

called the Jacobian Jf (z) : Z �! Q, as is its inverse f
�1 : Q �! Z by the inverse Jacobian

Jf�1(q) = Jf (z)�1 for every f(z) = q 2 Q.

In this specific regime, the push-forward distribution is guaranteed to have a corresponding
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density w.r.t. the base measure �Q (Kobyzev et al., 2019):

(⌘Z � f�1)(dq) = (h � f�1)(q) (�Z � f�1)(dq)

= (h � f�1)(q)
d(�Z � f�1)

d�Q
(q)�Q(dq)

= (h � f�1)(q)
��det Jf�1(q)

���Q(dq)

(3.4)

and (3.3) recovers the familiar equation for a change of variable. A useful interpretation here is, that

the transformed densities are obtained simply by applying a correction term based on the Jacobian

determinant of the transformation f . The following chapters will restrict to this special case.

Finally, consider again a target distribution ⇡Q on (Q,BQ). Since Q = Z = Rd, a base distribu-

tion ⌘Q and a parameterized measurable di↵eomorphism:

f
 : Q �! Q, q0 7! f

 (q0) = qT (3.5)

induce a variational family �(⌘Q, f ) ✓ ⇧(Q). According to equation (3.4), the density q
 (qT ) of

each variational family member � 
Q
2 �(⌘Q, f ) can be summarized as:

q
 (qT ) =

⇣
h � (f )�1

⌘
(qT )

���det J(f )�1(qT )
���

() q
 (qT ) = h(q0)

��det Jf (q0)
���1

() log q (qT ) = log h(q0)� log
��det Jf (q0)

�� 8 q0, f (q0) = qT 2 Q.

(3.6)

Since in practice it is convenient to work with densities in the logarithmic domain, this will be the

convention for the remaining discussion.

3.1.3 Compositions of Normalizing Flows

As mentioned earlier, it is desirable to be able to define rich variational families to allow for arbitrarily

good approximations even of complex target distributions ⇡Q. Similar to how neural networks in

machine learning are able to approximate arbitrary functions by composing parameterized a�ne

transformations with intermediate nonlinear maps, composing parameterized di↵eomorphisms allows

for the construction of su�ciently rich variational families as to represent any target distribution.

This has been proven formally for some choices of parameterized di↵eomorphisms (Bogachev et al.,

2005).

The observation that compositions of di↵eomorphisms are still di↵eomorphisms makes the idea

of composing normalizing flows trivial. Let f
 be a parameterized family of di↵eomorphisms con-

structed as such a composition, then this can be written as:

f
 = f

 T

T
� f T�1

T�1 � . . . � f
 2
2 � f

 1
1 with f

 k

k
(qk�1) = qk, f

 (q0) = qT , (3.7)
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where all the composed transformations can be defined independently with completely unrelated

parameter sets  k. The determinant of the Jacobian then distributes onto the Jacobians of the

individual transformations according to the chain rule and determinant properties (Papamakarios

et al., 2019; Kobyzev et al., 2019):

det Jf (q0) = det

✓
JfT

 T
(qT�1) � JfT�1

 T�1

(qT�2) � . . . � Jf2
 2
(q1) � Jf1

 1
(q0)

◆

=
TY

k=1

det J
f
k
 k

(qk�1).

(3.8)

It is easy to see how this manifests in the density of the respective variational family members:

log q (qT ) = log h(q0)� log
��det Jf (q0)

��

= log h(q0)�
NX

k=1

log

����det Jfk
 k

(qk�1)

���� ,
(3.9)

while samples are still trivially generated by applying all the component transformations successively.

3.2 Variational Bayesian Inference with Normalizing Flows

In the case of variational Bayesian inference the target distribution is the posterior ⇡⇥|Y N on a

parameter space (⇥ = Rd
,B⇥), with the usual notation for the prior distribution, likelihood function

and the unnormalized posterior µD

⇥(d✓) = LD(✓)⇡⇥(d✓) defining the Bayesian model. A normalizing

flow then is a parameterized measurable di↵eomorphism f
 : ⇥ �! ⇥ with  2  ✓ Rr. Together

with some base distribution ⌘⇥, a normalizing flow induces a variational family �(⌘⇥, f ). The

optimization problem clearly is:

�
†
⇥ : = argmin

�⇥2�
F(�⇥) = argmin

�⇥2�
�E�⇥

"
log �dµ

D

⇥

d�⇥

#
, (3.10)

as derived in Section 2.2.
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3.2.1 Variational Free Energy for Normalizing Flows

The specific structure of the variational family members � ⇥ = ⌘⇥ � (f )�1 2 �(⌘⇥, f ) allows a

more convenient reformulation of the variational free energy (Papamakarios et al., 2019):

F(� ⇥) = �E� ⇥

"
log �dµ

D

⇥

d�
 

⇥

#

= �E⌘⇥

"
log �dµ

D

⇥

d�
 

⇥

� f 
#

= �E⌘⇥

"
log �d(µ

D

⇥ � f )
d(� ⇥ � f )

#

= �E⌘⇥

"
log �d(µ

D

⇥ � f )
d⌘⇥

#

= �E⌘⇥

"
log �d(µ

D

⇥ � f )
d(� � f )

d(� � f )
d�

d�

d⌘⇥

#

= �E⌘⇥

"
log �dµ

D

⇥

d�
� f + log �

��det Jf ( · )
��
#
�H

✓
d⌘⇥

d�

◆
,

(3.11)

where � is the Lebesgue measure on (⇥,B⇥) and µ
D

⇥ , �
 

⇥ are equivalent to �. In this case the Radon-

Nikodym derivative is equal to the ratio of the respective densities and the identity follows from the

point-wise definition of ratios of functions and the properties of f . The final line can be interpreted

as a function of only the variational parameters  instead of a functional of the variational family

members, such that:

F( ) = �E⌘⇥

"
log �dµ

D

⇥

d�
� f + log �

��det Jf ( · )
��
#
�H

✓
d⌘⇥

d�

◆
. (3.12)

There are some further clarifications required:

i) The term Jf is a map Jf : ⇥ �! Hom(⇥,⇥) from the underlying space onto the set of linear

maps on it. In particular, it returns for each ✓0 2 ⇥ the linear approximation Jf (✓0) : ⇥ �! ⇥

to the transformation f
 at that point.

ii) The Radon-Nikodym derivative of the unnormalized posterior µ
D

⇥ w.r.t. the base measure �

corresponds to the density p(D, ✓) of the unnormalized posterior, which is accessible via the

definition of the Bayesian model.

iii) The entropy H
⇣

d⌘⇥

d�

⌘
obviously only depends on the choice of base distribution and is thus

irrelevant for the optimization.
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The optimization problem can then be rewritten as:

 
† : = argmin

 2 
F( )

= argmin
 2 

�E⌘⇥

"
log �dµ

D

⇥

d�
� f + log �

��det Jf ( · )
��
#
,

(3.13)

where the corresponding member of the variational family that is closest to the target distribution is

constructed as �†⇥ := �
 

†

⇥ = ⌘⇥�(f 
†
)�1. Although this reformulation does not immediately seem to

be advantageous, it resolves the dependency of the expectation on the variational parameters. This

allows to use Monte Carlo sampling to approximate the expectation before computing the gradient

of the variational free energy in gradient based optimization methods (Papamakarios et al., 2019):

r F( ) ⇡ � 1

N

NX

n=1

r log p(D, f
 (✓n0 )) +r log

��det Jf (✓n0 )
�� ✓

n

0 ⇠ ⌘⇥. (3.14)

Mohamed et al. (2019) call this a pathwise gradient estimator. They also discuss other possible

gradient estimators for cases in which the expectation can not be uncoupled from the variational

parameters via a reparameterization, which might be relevant for di↵erently constructed types of

variational families.

3.3 Practical Challenges

There are some practical challenges associated with constructing and applying normalizing flows.

First, it is generally not trivial to construct appropriate parameterized di↵eomorphisms, although

even simple ones allow the construction of more complex transformations by composition.

The main challenge when constructing normalizing flows is to ensure bijectivity. By the structure

of normalizing flows it is clear that the forward transformation is required for generating samples

from a push-forward distribution, while evaluating their probability densities requires the inverse

transformation. Although bijectivity has to be guaranteed, in some applications it is not neces-

sary to be able to explicitly compute the inverse, which would be an even stronger requirement

(Papamakarios et al., 2019).

The main problem regarding e�cient application of normalizing flows is the computation of the

Jacobian determinant. Even with sophisticated methods for computing the Jacobian, at least the

determinant evaluation is problematic for high-dimensional underlying spaces. Much research in the

area of normalizing flows therefore focuses on constructing flows that allow for e�cient computation

of the Jacobian determinant, while still having high expressive power. One example would be to

ensure a triangular matrix representation of the Jacobian, such that the determinant is just the

product of the diagonal elements (Papamakarios et al., 2019).
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Both, Kobyzev et al. (2019) and Papamakarios et al. (2019), include reviews of di↵erent normal-

izing flow structures, highlighting benefits and drawbacks. This thesis will thus not get into any

more detail in this regard, but focus on a particular kind of normalizing flows, called residual flows,

which lead to the notion of continuous normalizing flows.

3.4 Continuous Normalizing Flows

This section discusses residual flows, their composition, and derives continuous normalizing flows as a

limiting case. Moreover, benefits and drawbacks of continuous normalizing flows will be highlighted.

Finally, augmented and volume preserving flows will be investigated, since they are fundamental to

the idea of Hamiltonian normalizing flows, which are discussed in the next chapter.

3.4.1 Residual Flows

As before, consider a measurable space (Q = Rd
,BQ), such that Q is a Euclidean vector space.

Residual flows then are a particular type of normalizing flow, where the transformation f
 : Q �! Q

is constructed as:

f
 (q0) = q0 + V

 (q0) = qT q0, qT 2 Q. (3.15)

It is apparent that residual flows are defined by a family of vector fields V  : Q �! Q that completely

determine f
 . One approach that ensures bijectivity of the constructed transformation f

 , is to

require V
 to be Lipschitz continuous with Lipschitz constant L < 1, such that it is a contractive

map and the invertibility follows from the Banach fixed-point theorem (Papamakarios et al., 2019).

Intuitively the vector field V
 defines the di↵erence vectors along which each point is translated

due to the transformation f
 . Again, it is easy to construct more expressive flows by composition,

such that:

f
 (q0) = q0 +

TX

k=1

V
 k

k
(qk�1) = qT with qk = qk�1 + V

 k

k
(qk�1) qk 2 Q. (3.16)

This can the be interpreted as a path along which each point is translated through Q, or alternatively

again a single translation defined by the sum of di↵erence vectors.

The name residual flows was coined by Papamakarios et al. (2019) to highlight the strong simi-

larity to residual neural networks, which were introduced by He et al. (2015).

3.4.2 Continuous Time Limit of Residual Flow Compositions

There is an interesting limiting case of compositions of residual flows, in which infinitely many

di↵erential translations are considered. To derive this case, first introduce a discrete time parameter
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t with step size �t to replace the index k in equation (3.16):

qt = qt��t +�t V
 t
t

(qt��t), (3.17)

where the original form is recovered for �t = 1. This allows to consider the continuous time limit,

i.e. �t! 0, after rearrangement:

lim
�t!0

qt � qt��t

�t
= lim
�t!0

V
 t
t

(qt��t) s.t.
dqt

dt
= V

 t
t

(qt). (3.18)

The result is a di↵erential equation describing the change of qt over time. This has a convenient

physics analogy, where qt denotes the position of a particle at time t 2 R, which changes over time

according to a time dependent velocity vector field Vt. Note that the solution to such an equation,

for an initial state q0 2 Q, is a trajectory with final state qT 2 Q at time T .

3.4.3 Defining Continuous Normalizing Flows

To define so called continuous normalizing flows, also known as infinitesimal or continuous time

flows (Papamakarios et al., 2019; Kobyzev et al., 2019), it is necessary for practical purposes to

restrict to cases in which the variational parameters are time independent, that is  t =  8t 2 R.
Consider any di↵erential equation:

dqt

dt
= V

 

t
(qt), (3.19)

where for every  2  , the vector field V
 

t
is continuous in t and uniformly Lipschitz continuous

in qt, i.e., there is a Lipschitz constant for all t 2 R. In this case, the equation is locally uniquely

solvable for an initial q0 2 Q, according to the Picard-Lindelöf theorem, and induces a smooth

reversible flow on Q:

�
 

t
: Q �! Q, q0 �! q0 +

Z
t

0
V
 

u
(qu)du = qt. (3.20)

This really is a flow in the mathematical sense, i.e., a group action of the additive group of the

real numbers on Q with the properties described in (1.46), which can easily be verified. It is also

e↵ectively parameterized by the parameters of the vector field defining the di↵erential equation and

is thus a normalizing flow f
 := �

 

T
for some fixed evolution time T 2 R. Trivially, there is no need

to worry about the invertibility of such normalizing flows and the computational costs are identical

in both directions. This allows to make use of neural networks to define the derivative function, i.e.,

the vector field V
 

t
(Papamakarios et al., 2019; Kobyzev et al., 2019). The general idea originated

with Chen et al. (2018) under the name Neural ODEs (NODE).

As already derived for general normalizing flows in equation (3.9), it is clear that the density of
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a variational family member � 
Q
2 �(⌘Q, f ) is given by:

log q (qT ) = log h(q0)� log
��det Jf (q0)

�� . (3.21)

Chen et al. (2018), however, in their paper ’Neural Ordinary Di↵erential Equations’, show that

under a continuous flow �
 

t
, determining the trajectory qt, the logarithmic density also follows the

di↵erential equation:
d log q (qt)

dt
= �Tr

n
J
V
 
t
(� 

t
(q0))

o
, (3.22)

where the initial density q
 (q0) := h(q0) is the density of the base distribution ⌘Q and the final

density q
 (qT ) is that of the push-forward ⌘Q � (f )�1. Furthermore, Tr { · } denotes the trace of a

linear map. From this di↵erential equation it is immediately clear that the density of the variational

family member � 
Q

can also be expressed as:

log q (qT ) = log h(q0)�
Z

T

0
Tr

n
J
V
 
t
(� 

t
(q0))

o
dt, (3.23)

such that for f := �
 

T
the identity:

log
��det Jf (q0)

�� =
Z

T

0
Tr

n
J
V
 
t
(� 

t
(q0))

o
dt (3.24)

directly follows from equations (3.21) and (3.23).

In practice, this allows to simultaneously transform samples q0 ⇠ ⌘Q and compute their trans-

formed logarithmic densities log q (qT ) via the combined integral (Papamakarios et al., 2019):

2

4 qT

log q (qT )

3

5 =

2

4 q0

log h(q0)

3

5+

Z
T

0

2

4 V
 

t
(qt)

�Tr
n
J
V
 
t
(qt)
o
3

5 dt. (3.25)

With the usual notational conventions for variational Bayesian inference, this allows to rewrite

the variational free energy and thus the optimization problem (3.13) as:

 
† : = argmin

 2 
F( )

= argmin
 2 

�E⌘⇥

"
log �dµ

D

⇥

d�
� f + log �

��det Jf ( · )
��
#

= argmin
 2 

�E⌘⇥

"
log �dµ

D

⇥

d�
� f +

Z
T

0
Tr

n
J
V
 
t
(� 

t
( · ))

o
dt

#
,

(3.26)
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such that the relevant gradient approximation for optimization takes the form:

r F( ) ⇡ �
NX

n=1

r log p(D, f
 (✓n0 )) +r 

Z
T

0
Tr

n
J
V
 
t
(� 

t
(✓n0 ))

o
dt ✓

n

0 ⇠ ⌘⇥. (3.27)

While the relevant gradients can be computed via automatic di↵erentiation through the numerical

integration, this is not particularly e�cient. Chen et al. (2018) propose to use the so called adjoint

sensitivity method instead, where the gradient is shown to follow another di↵erential equation, such

that it can be computed using a standard ODE solver. The details of this method are beyond the

scope of this thesis.

Finally, it should also be noted that continuous normalizing flows can still be combined further

into compositions of such flows. To do this, simply consider multiple di↵erential equations, each of

which induces a flow. For fixed integration times those flows can be combined via composition.

3.4.4 Benefits and Drawbacks

There are some obvious benefits provided by continuous normalizing flows. The main advantage is

that the parameterized vector field V
 

t
(qt), which defines the continuous normalizing flow f

 := �
 

T
,

has no hard constraints except for the continuity condition mentioned before. This allows for the

use of, for example, neural networks to define this vector field. At the same time the structure

of continuous normalizing flows allows for simple inversion of the flow (Papamakarios et al., 2019;

Kobyzev et al., 2019). Moreover, the computation of the trace is much more e�cient than that of

the determinant.

The trace, on the other hand, has to be computed for every integration step and not just once.

One should, however, not loose sight of the fact that a continuous normalizing flow corresponds to

a composition of infinitely many residual flows and has an accordingly high expressive power. For

an approximation of the integration with Euler’s method, the continuous normalizing flow in fact

breaks down into a composition of a large number of residual flows (Papamakarios et al., 2019).

Finally, the integrals involved generally increase the cost for the transformation of samples,

the computation of transformed densities and the gradient required for optimization. Everything,

therefore, comes down to a trade o↵ between the increased computational costs on the one hand

and the increase in expressive power plus the simple construction and inversion on the other hand.

3.5 Extensions to Continuous Normalizing Flows

There are two interesting extensions of continuous normalizing flows worth considering. First, it

has been shown that continuous normalizing flows can represent any di↵eomorphism when lifting

the problem onto a higher dimensional space by adding auxiliary variables (H. Zhang et al., 2019).

Accordingly, they are then capable of approximating any target distribution (Kobyzev et al., 2019).
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This idea was introduced by Dupont et al. (2019), as Augmented Neural ODEs (ANODE), which

may define augmented normalizing flows.

Second, although the trace computation can be e�ciently approximated using, e.g., the Hutchin-

son’s trace estimator (Hutchinson, 1990), it would be useful to avoid those computations entirely.

This is possible with what will be referred to as continuous volume preserving flows. Volume pre-

serving flows are simply based on the idea of constructing normalizing flows with a unit Jacobian

determinant or vanishing trace respectively. This is obviously also possible for normalizing flows

more generally, not only for continuous normalizing flows (Rezende & Mohamed, 2015). Both ap-

proaches are introduced in the next two subsections.

3.5.1 Augmented Normalizing Flows

Intuitively, the idea behind augmented normalizing flows is that, if the relevant space is thought of

as being embedded in a higher dimensional space, the flows are constrained to this subspace. If the

evolution is, however, computed on the total space, by solving the corresponding augmented ODE,

the flows become in general more flexible and can find more e�cient solutions, because they can

exploit the additional dimensions (Dupont et al., 2019; H. Zhang et al., 2019; Huang et al., 2020).

In practice, therefore, this amounts to defining a product space Q⇥ A, where A = Rp for some

p 2 N, on which the augmented flows are defined. Note that Q = Rd is still assumed to be a

Euclidean vector space. The ODE, augmented with at 2 A, thus takes the form:

d

dt
(qt, at) = V

 

t
(qt, at). (3.28)

This di↵erential equation then induces the corresponding augmented flow:

�
 

t
: Q⇥A �! Q⇥A, (q0, a0) �! (q0, a0) +

Z
t

0
V
 

u
(qu, au)du = (qt, at). (3.29)

Naive Augmented Normalizing Flows

For some fixed time T this flow can be used to define a normalizing flow on the base space Q. This

requires that the initial values for the augmentation are always set to zero, such that the initial

state is restricted to Q⇥ {0} ✓ Q⇥A. Moreover, by adding a corresponding term to the objective

function of the optimization problem, one tries to enforce that � 
T
(q0, 0) = (qT , 0) 8q0 2 Q, i.e.,

the final state is also confined to the subspace Q⇥ {0}, which ensures invertibility (H. Zhang et al.,

2019). This is usually only approximately possible, since it is subject to the optimization. Then a

normalizing flow on Q can be defined as:

f
 : Q �! Q, q0 �! (!Q � � T )(q0, 0) = qT , (3.30)
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where !Q : Q ⇥ A �! Q is a projection onto the base space. This normalizing flow, together with

a base distribution ⌘Q induces a variational family �(⌘Q, f ). A corresponding objective function

for the variational Bayesian inference problem with the unnormalized target measure µQ could look

like:

Faug( ) = �E⌘Q

"
log �dµQ

d�
� f +

Z
T

0
Tr

n
J
V
 
t
(� 

t
( · , 0))

o
dt+

���(!A � � T )( · , 0)
���
A

#
, (3.31)

with the last term being a norm penalty on deviations of the final states of the flow �
 

T
from the

subspace Q ⇥ {0}. This approach is extremely restrictive and causes a number of problems, such

that it cannot really be made rigorous. It can, however, be interpreted as a degenerate case of the

following idea.

General Augmented Normalizing Flows

Instead of restricting the initial and final state of the flow on the augmented space Q ⇥ A to

the subspace Q ⇥ {0}, one could lift the whole problem onto the augmented space. To do this,

assume (A,BA) to be a measurable space, such that the augmented space is the product space

(Q⇥A,BQ ⌦ BA). Now introduce a fixed base distribution on this space as:

⌘Q⇥A(dq, da) = ⌘Q(dq)⌘A|Q(da|q). (3.32)

In this case, the augmented flow itself defines a normalizing flow f
 := �

 

T
for a fixed time T and

induces a variational family �(⌘Q⇥A, f
 ) with members � 

Q⇥A
= ⌘Q⇥A � (f )�1 on the augmented

space. The goal then would be to minimize the divergence between the marginals of the those

members, i.e. � 
Q⇥A

� !�1
Q

, and the target distribution ⇡Q.

Because marginalization over the augmented space will typically be intractable, one could instead

assume that the target distribution ⇡Q has a corresponding distribution ⇡Q⇥A on the augmented

space, such that its disintegration w.r.t. the projection !Q takes the form:

⇡Q⇥A(dq, da) = ⇡Q(dq)⇡A|Q(da|q). (3.33)

Note that every choice of conditional distribution ⇡A|Q induces a target distribution on the aug-

mented space, such that the optimization problem can be lifted onto it. Equivalently, the conditional

distribution lifts the corresponding unnormalized target measure µQ according to:

µQ⇥A(dq, da) = µQ(dq)⇡A|Q(da|q). (3.34)

The goal then is to minimize the divergence between the variational family members and the lifted

target distribution. Considering the reverse KL-divergence, as usual for the case of variational
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Bayesian inference, the optimization problem can be formulated as:

 
† := argmin

 2 
DKL

⇣
�
 

Q⇥A
||⇡Q⇥A

⌘
. (3.35)

As in equation (3.11), the augmented variational free energy then takes the form:

Faug( ) = �E� Q⇥A

2

4log �dµQ⇥A

d�
 

Q⇥A

3

5

= �E⌘Q⇥A

"
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d�Q⇥A

� f +

Z
T

0
Tr
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J
V
 
t
(� 

t
( · ))

o
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#
�H

 
d⌘Q⇥A

d�Q⇥A

!
.

(3.36)

This is exactly analogous to the simple continuous normalizing flow case, except everything is hap-

pening on the augmented space. Since minimization of the KL-divergence is equivalent to the

minimization of the augmented variational free energy, the optimization problem finally is:

 
† : = argmin

 2 
DKL(�

 

Q⇥A
||⇡Q⇥A)

= argmin
 2 

Faug( )

= argmin
 2 

�E⌘Q⇥A
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T
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Tr
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J
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#
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(3.37)

Deconstructing the Augmented Variational Free Energy

To further investigate the augmented variational free energy Faug( ) and get a better intuition,

consider now additionally the disintegration of the variational family members w.r.t. the projection

onto the base space:

�
 

Q⇥A
(dq, da) = �

 

Q
(dq)� 

A|Q(da|q). (3.38)
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Following (Salimans et al., 2014), the augmented variational free energy Faug( ) can then be de-

constructed according to:

Faug( ) = �E� Q⇥A

2
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3

5

= �E
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(3.39)

Note that all of this assumes the existence of the relevant Radon-Nikodym derivatives, such that

they correspond to the respective density ratios. The final line can be recognized as the variational

free energy F( ) between the actual target distribution and the marginals of the variational family

members, plus an expected KL-divergence term, which Huang et al. (2020) refer to as the augmen-

tation gap. This augmentation gap is obviously non-negative and plays a role similar to the norm

penalty in (3.31). The initially presented naive approach thus seems to be something like a limiting

case of this more general version, in which the distributions ⇡A|Q and ⌘A|Q are chosen to be the

Dirac probability measure on zero.

Sampling and Density Evaluation

Similar to the continuous normalizing flow case one can sample from the variational family members

and evaluate densities simultaneously according to:

2

4 (qT , aT )

log q (qT , aT )

3

5 =

2

4 (q0, a0)

log h(q0, a0)

3

5+

Z
T

0

2

4 V
 

t
(qt, at)

�Tr
n
J
V
 
t
(qt, at)

o
3

5 dt, (3.40)

where h(q0, a0) is the density of the lifted base distribution ⌘Q⇥A and q
 (qT , aT ) is the density of

the variational family members. To obtain approximate samples from the actual target distribution
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⇡Q, one can simply discard aT and keep only qT from the generated samples. The density of the

target distribution for the generated samples can be approximated as:

q
 (qT ) =

q
 (qT , aT )

p(aT |qT )
, (3.41)

for p(aT |qT ) being the density of the chosen conditional distribution ⇡A|Q, which defined the lift

of the target onto the augmented space. This is reasonable, because the optimization minimizes

the augmentation gap, such that q
 (aT |qT ) will be close to p(aT |qT ). This approximation may be

improved further by defining the lift of the target onto the augmented space as a variational family

⇡
⇠

A|Q, via some family of density functions p
⇠(aT |qT ), and optimizing those parameters along with

the others.

To approximate the density of an arbitrary sample qT ⇠ ⇡Q, it is not possible to simply use the

inverse flow and evaluate the density of the base distribution, because the lift onto the augmented

space involves sampling. It thus has to be evaluated as an expectation:

q
 (qT ) = E⇡A|Q

"
q
 (qT , · )
p( · |qT )

#
⇡ 1

N

NX

n=1

q
 (qT , anT )

p(an
T
|qT )

a
n

T
⇠ ⇡A|Q(da|qT ), (3.42)

where q
 (qT , anT ) can now be evaluated using the inverse flow and the base distribution.

3.5.2 Volume Preserving Flows

Another interesting improvement of continuous normalizing flows would be to define volume pre-

serving flows, for which the trace of the Jacobian vanishes, to spare even more computational costs.

In general, note that the Jacobian determinant and Jacobian trace corrections ensure the volume

preserving property of normalizing flows. If, however, a flow by construction is volume preserving,

the computation of this correction term can be avoided. For continuous normalizing flows this is

exactly the case, if the vector field V
 

t
inducing the flow �

 

t
is divergence free:

Tr

n
J
V
 
t
(qt)
o
= r · V  

t
(qt) = 0. (3.43)

This is immediately clear from the definition of the divergence of vector fields. When inspecting

equation (3.23), this implies that the density of the variational family members can trivially be

evaluated as:

log q (qT ) = log h(q0)�
Z

T

0
Tr

n
J
V
 
t
(� 

t
(q0))

o
dt

= log h(q0)� 0

= log h(q0).

(3.44)
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This can yield a significant reduction in computational costs, while restricting the expressiveness

of corresponding normalizing flows. The main question then is how to construct a parameterized

divergence free vector field.

One approach would be to note that the curl of any vector field is divergence free. Then a

parameterized divergence free vector field V
 = r⇥A

 can be defined as the curl of a parameter-

ized vector potential A . The generalizations of the curl operator to more than three dimensions,

however, let alone the corresponding computations, are not easily understood and go far beyond the

scope of this thesis. It is not clear that this is a viable approach.

Hamiltonian normalizing flows provide a di↵erent path to defining volume preserving flows and

will be introduced in the next chapter.



Chapter 4

Hamiltonian Normalizing Flows

This chapter introduces Hamiltonian normalizing flows, motivated by Toth et al. (2019). To under-

stand the underlying idea, it is necessary to first introduce the Hamiltonian formalism of classical

mechanics along with the notion of a phase space, a Hamiltonian and Hamiltonian flows on this

space. Significant simplifications are necessary, since the mathematical details are far beyond the

scope of this thesis. Finally, Hamiltonian flows can be used to define Hamiltonian normalizing flows

as volume preserving augmented continuous normalizing flows, which is the main goal of this thesis.

4.1 The Hamiltonian Formalism

Beyond the well known Newtonian formulation of classical mechanics there are two relevant refor-

mulations of the theory—the Lagrangian and the Hamiltonian formalism. Since this thesis avoids

the discussion on the level of smooth manifolds and the associated language of di↵erential geome-

try, the main reference for this section will be Goldstein et al. (2001), which is a standard text on

classical mechanics. The next subsections will introduce some foundations regarding Newtonian and

Lagrangian mechanics, before discussing the relevant notions of the Hamiltonian formalism.

4.1.1 From Newtonian to Lagrangian Mechanics

First, note that Newton’s equations of motion describe the dynamics of a single particle of mass m

in terms of a second order di↵erential equation of the general form:

F (r, ṙ, t) = mr̈, (4.1)

where t denotes time, the dots denote time derivatives and r 2 R3 corresponds to the position of

the particle in a Cartesian coordinate system.

47
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In the Newtonian formalism, the dynamics of a particle, i.e., its trajectory r(t) given some initial

position r(0) and velocity ṙ(0), is determined by a force F (r, ṙ, t). In particular, the equation itself

expresses that the change of the particles momentum p = mṙ exactly corresponds to the force acting

on it.

From another perspective, the force specifies a particular type of physical system. The harmonic

oscillator in one dimension, for example, is exactly characterized by a force F (x) = �kx, where
the force acting on the particle is proportional to its position with constant �k, such that k 2 R+.

Forces that are velocity independent, i.e. F (r, t), can be considered time dependent vector fields and

are referred to as force fields. For time independent force fields F (r), those that can be derived as

the negative gradient field of an underlying scalar function U(r) are called conservative. For those

forces, Newton’s equations can be reformulated as:

F (r) = �rrU(r) =) �rrU(r) = mr̈. (4.2)

In this case, a physical system is therefore determined by a scalar function U(r), called the poten-

tial energy. Furthermore, the notion of the velocity dependent kinetic energy of the system is an

important quantity defined as a scalar function:

T (ṙ) =
1

2
mhṙ, ṙi. (4.3)

Now consider a more general setting, where a system consists of N particles interacting with each

other. Then there will be 3N coupled equations of motion, one for each dimension and particle, and

the momentum of each particle changes according to the net force acting on it. There will usually

also be constraining forces involved in any physical system, such that it has a reduced number of

degrees of freedom in which it can actually change.

If a suitable coordinate system is chosen, then the so called configuration of the system can be de-

scribed by d  3N independent generalized coordinates denoted q = (q1, q2, ..., qd) 2 Q ✓ Rd, where

Q is called the configuration space of the system. The relationship between the old Cartesian coor-

dinate components r
1
, r

2
, ..., r

3N and new coordinates q
1
, q

2
, ..., q

d can be summarized in transfor-

mation equations ri = f
i(q1, q2, ..., qd, t). For the purposes of this thesis the configuration space will

be considered equal to some Rd, that is, all the coordinates are unconstrained real values. The time

derivative of the generalized coordinates yields the generalized velocities q̇ = (q̇1, q̇2, ..., q̇d) 2 V ✓ Rd,

where V is called the velocity space. Again, for the purpose of this thesis, consider this velocity

space to be equivalent to the same Rd. With those simplifications, the so called tangent bundle TQ

of the configuration space is in fact equivalent to a product space TQ = Q⇥ V = Rd⇥Rd, together

with the associated projection !Q : TQ �! Q, (q, v) 7�! q onto the base space.

With the above notion, it is possible to derive generalized equations of motion, which are for-

mulated in terms of a so called Lagrangian, a function L : TQ ⇥ R �! R, which is the di↵erence
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of the kinetic and potential energies L(q, q̇, t) = T (q, q̇, t) � U(q, q̇, t). A Lagrangian completely

specifies a physical system, although it is not unique—very similar to how potential energies are

only determined up to an additive constant. Note that the kinetic and potential energy in terms of

the generalized coordinates and velocities are obtained via the transformation functions f i.

One approach to derive the generalized equations of motion for conservative systems, is to make

use of Hamilton’s principle and some variational calculus. Hamilton’s principle states that a physical

system, between times t0 and t1, takes a trajectory between two fixed configurations for which the

action:

S[q(t)] =

Z
t1

t0

L(q, q̇, t)dt, (4.4)

a functional of the possible trajectories through configuration space, is stationary. A trajectory is

called a stationary state w.r.t. the action S, if the action to first order remains unchanged for small

deviations from this trajectory. From variational calculus it is known that the stationary states of

any functional are exactly the solutions to the Euler-Lagrange equations :

d

dt

@L(q, q̇, t)
@q̇i

=
@L(q, q̇, t)

qi
, i = 1, 2, ..., d (4.5)

which are a system of d  3N coupled second order di↵erential equations. A benefit here is, that the

equations are now reduced to a minimum by making use of independent coordinates, but also that

these equations are linear in the Lagrangian, which allows to easily derive the equations of motion

for more complicated composite systems.

4.1.2 Phase Space and the Hamiltonian

Starting from the Lagrange formalism, a Legendre transform of the Lagrangian in the velocity

parameters yields:

pi :=
@L(q, q̇, t)

@q̇i
q̇ := q̇(q, p, t) (4.6)

H(q, p, t) =
dX

i=1

q̇
i
@L(q, q̇, t)

@q̇i
� L(q, q̇, t)

=
dX

i=1

q̇
i(q, p, t) pi � L(q, q̇(q, p, t), t).

(4.7)

The parameters p 2 P = V
⇤ = (Rd)⇤ are called the conjugate momenta to the generalized coordi-

nates q 2 Q = Rd and are elements of the dual of the tangent space, at that point. They can be

represented by row vectors, for which the components are denoted by subscript indices. Since the

dual space (Rn)⇤ is equivalent to Rn itself, the distinction is not strictly necessary for the purposes

of this thesis.

With the simplifications of the previous subsection, the so called cotangent bundle T
⇤
Q of the
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configuration space is again equivalent to a product space T
⇤
Q = Q ⇥ P = Rd ⇥ (Rd)⇤, together

with the associated projection !Q : T ⇤
Q �! Q, (q, p) 7�! q onto the base space. The space T

⇤
Q

deserves a special name and is referred to as the phase space of the system. In the Hamiltonian

formalism, the two kinds of parameters p, q are now considered independent and on equal footing,

as opposed to being related via a time derivative as was the case in the Lagrangian formulation.

The function H : T ⇤
Q ⇥ R �! R, resulting from the Legendre transform, is called the Hamil-

tonian of the system. Naturally, it contains the same information as the Lagrangian and thus

completely specifies a physical system. In case the Hamiltonian is time independent, it is just a

function on phase space and corresponds to the total energy function of the system. Note that time

independence in this case only refers to the Hamiltonian not explicitly depending on time. Implicitly,

it will always depend on time due to the configuration and momentum being functions of time. This

thesis restricts to considering such time independent Hamiltonians, in particular those that are also

separable:

H(q, p) = T (p) + U(q), (4.8)

since they are su�cient for the purpose of Hamiltonian normalizing flows and have a convenient

form for numerical integration (Toth et al., 2019).

4.1.3 Hamilton’s Equations and Hamiltonian Flows

Hamilton’s equations of motion can then be derived again using Hamilton’s principle. First, review

the action functional and substitute the Hamiltonian for the Lagrangian according to their relation

due to the Legendre transform (4.7):

S[q(t), p(t)] =

Z
t1

t0

L(q, p, t)dt

=

Z
t1

t0

dX

i=1

q̇
i(q, p, t)pi �H(q, p, t)dt.

(4.9)

For convenience, consider the Lagrangian as a function of the parameters q, p and their derivatives:

L(q, q̇, p, ṗ, t) =
dX

i=1

q̇
i
pi �H(q, p, t). (4.10)

The corresponding 2d Euler-Lagrange equations then take the form:

d

dt

@L
@ṗi
� @L
@pi

= 0 i = 1, 2, ..., d

d

dt

@L
@q̇i
� @L
@qi

= 0 i = 1, 2, ..., d.
(4.11)
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Computing the actual derivatives in those equations simplifies them to:

dq
i

dt
=
@H(q, p, t)

@pi
i = 1, 2, ..., d,

dpi

dt
= �@H(q, p, t)

@qi
i = 1, 2, ..., d.

(4.12)

Those 2d first order di↵erential equations are called Hamilton’s equations of motion. The Hamilto-

nian formalism thus doubles the amount of equations, while decreasing the order. The solution to

those equations yields the continuous time evolution of a system in phase space for a given initial

state s0 = (q(0), p(0)) 2 T
⇤
Q = Rd ⇥ (Rd)⇤.

Considering the restriction to time independent and separable Hamiltonians in the previous

subsection, the final relevant form of the equations is:

dq
i

dt
=
@T (p)

@pi
i = 1, 2, ..., d,

dpi

dt
= �@U(q)

@qi
i = 1, 2, ..., d.

(4.13)

For simplicity, the component indexing will be dropped from now on and it is implicitly assumed

that all operations are done over all d components of q, p. Instead subscripts will be used to indicate

the time variable for a more concise notation, that is, (qt, pt) := (q(t), p(t)) denotes configuration

and momentum values at time t.

It is clear that Hamilton’s equations in general (4.12), similar to any ODE, induce a flow on

phase space according to:

�
H

t
: T ⇤

Q �! T
⇤
Q,

(q0, p0) 7�! (q0, p0) +

Z
t

0

✓
@H(qu, pu, u)

@p
, �@H(qu, pu, u)

@q

◆
du = (qt, pt),

(4.14)

which is referred to as a Hamiltonian flow.

If the Hamiltonian is time independent, i.e. H(q, p), there are two interesting properties worth

mentioning. First, the Hamiltonian is a conserved quantity over the evolution of the system and

thus corresponds to the total energy of the system. This is shown by considering the time derivative

of the Hamiltonian:
dH(q, p)

dt
=
@H(q, p)

@q

dq

dt
+
@H(q, p)

@p

dp

dt

=
@H(q, p)

@q

@H(q, p)

@p
� @H(q, p)

@p

@H(q, p)

@q

= 0.

(4.15)

Since the time derivative vanishes, there are no changes in the Hamiltonian over time. Accordingly,
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this implies that the Hamiltonian is constant along the corresponding Hamiltonian flow:

H(q0, p0) = H(�H
T
(q0, p0)) = H(qT , pT ). (4.16)

Secondly, the divergence of the vector field defined by Hamilton’s equations vanishes, which is

related to Liouville’s theorem. This can be easily seen:

r(q,p) ·
✓
@H(q, p)

@p
, �@H(q, p)

@q

◆
=
@
2H(q, p)

@q@p
� @

2H(q, p)

@p@q
= 0, (4.17)

due to the symmetry of second partial derivatives, that is, Schwarz’s theorem, and the asymmetry

in Hamilton’s equations.

In summary, notice how this formalism allows to define a physical system via a scalar function

H(q, p) = T (p)+U(q), the Hamiltonian, that induces a Hamiltonian flow �
H

t
on phase space T ⇤

Q =

Q⇥ P = R ⇥ (R)⇤ according to Hamilton’s equations, which is volume preserving by construction.

In practice, so called symplectic integrators are used to numerically compute those flows. They have

the special property of exactly preserving a slightly perturbed version of the Hamiltonian, which is

of significance especially for computing flows over longer time intervals (Donnelly & Rogers, 2005).

4.2 Hamiltonian Flows as Normalizing Flows

Constructing Hamiltonian normalizing flows is now almost trivial. The straightforward solution to

defining a parameterized Hamiltonian flow is simply via a parameterized Hamiltonian. As mentioned

before, it is especially convenient to restrict to time independent and separable Hamiltonians:

H (q, p) = T
↵(p) + U

�(q), with  = (↵,�) 2  = Rr
. (4.18)

Intuitively, this defines a family of Hamiltonian systems, that is, physical systems that exhibit varying

behavior. If T↵(p) and U
�(q) are di↵erentiable, then H (q, p) induces a di↵erentiable family of flows

on phase space as in (4.14):

�
 

t
: T ⇤

Q �! T
⇤
Q,

(q0, p0) 7�! (q0, p0) +

Z
t

0

 
@H (qu, pu)

@p
, �@H

 (qu, pu)

@q

!
du = (qt, pt).

(4.19)

For some fixed time T , this family of Hamiltonian flows defines a volume preserving continuous

normalizing flow f
 := �

 

T
, which will be referred to as a Hamiltonian normalizing flow (HNF). For

any initial state (q0, p0) this flow computes the evolution of the system H defined by the value of

the parameters  .
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4.2.1 Hamiltonian Normalizing Flows for Variational Inference

Recall that in variational inference there is an underlying measurable space (Q,BQ) and some target

distribution ⇡Q, which in variational Bayesian inference corresponds to the posterior on a parameter

space.

Following Toth et al. (2019), it seems arbitrary to split the dimensions of this space into configura-

tion and momentum parameters as to identify it with the phase space in the Hamiltonian formalism,

if it has an even number of dimensions at all. Similar to the approach taken in the Hamiltonian

Monte Carlo method it is instead useful to identify the space (Q,BQ) with the configuration space,

as the notation already indicates. In the Bayesian inference context the configuration space of the

Hamiltonian formalism with this choice conveniently corresponds to some parameterization of the

model configuration space.

The idea then is to introduce an auxiliary parameter for each configuration parameter, such that

those auxiliary parameters correspond to dimensions of the momentum space (P,BP ) (Toth et al.,

2019). Phase space is thus just the product space (Q⇥P, BQ⌦BP ). Moreover, let !Q : Q⇥P �! Q

be a projection back onto configuration space and !P : Q ⇥ P �! P the corresponding projection

onto momentum space.

HNFs then are just augmented normalizing flows, where the augmentation space is the momen-

tum space. In contrast to general augmented normalizing flows, the additional parameters can,

however, not evolve independent from the original ones. They are constrained by the preservation

of the Hamiltonian along a flow. This, at least intuitively, makes HNFs less expressive (Toth et al.,

2019). The interesting aspect is that this exact property is what makes HNFs volume preserving

and thus more computationally e�cient.

HNFs, therefore, combine the properties of augmented and volume preserving normalizing flows,

such that the optimization problem for variational Bayesian inference simplifies to:
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 2 
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 2 
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� f 
#
.

(4.20)

In summary, HNFs trade some additional cost for computing the corresponding transformation for

less costs in the evaluation of the Jacobian trace correction of the transformation. More specifically,

HNFs double the parameters involved and sacrifice expressive power to avoid this computation of

the correction term entirely (Toth et al., 2019).
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The question is, whether or not this trade o↵ is beneficial in practice. At least in the case of

density estimation, for which HNFs were initially introduced, they show performance comparable

to Real-valued Non-Volume Preserving (RNVP) flows (Dinh et al., 2016) on a Gaussian mixture

dataset, but are more computationally e�cient (Toth et al., 2019). RNVP flows were used as a

baseline, because they are capable of reproducing state of the art level image generation performance

on various benchmark datasets and are thus highly expressive.



Chapter 5

Evaluation

The goal of this chapter is to introduce a possible implementation of Hamiltonian Normalizing flows

for variational Bayesian inference and to evaluate qualitatively, whether or not they are capable of

solving simple variational Bayesian inference problems. The objective is to provide a proof of concept

for their applicability to Bayesian inference, not to definitively evaluate their performance. To do

this, this chapter investigates the inference problem for two simple Bayesian models—a univariate

Gaussian and a linear regression model.

5.1 Implementation

In the context of this thesis a Python software package for Bayesian inference is being developed on

the basis of TensorFlow Probability1 (TFP) (Dillon et al., 2017). It is used for the implementation

of the experiments described in Section 5.2. Discussing the structure and documentation of the

package in detail is beyond the scope of this thesis, but the respective GitHub repository2 contains

the documentation and example code.

In general, the package allows for a simple definition of Bayesian models using TFP distribu-

tions. It utilizes TFP bijectors, among other things, to allow for computations on an unconstrained

parameter space that is equal to some Rd, as was assumed in the theory of this thesis. The bijectors

implement di↵eomorphisms by specifying their forward and inverse transformations, as well as the

respective Jacobian determinant corrections.

In addition to allowing for the flexible definition of Bayesian models, the package implements

two general inference algorithms, Markov Chain Monte Carlo (MCMC) and variational Bayesian

inference (VI). Every one of those algorithms at least requires the model and a dataset as an input,

and implements a fit method that performs the parameter inference.

1
url: https://www.tensorflow.org/probability

2
url: https://github.com/MaxGrtz/bayesian-inference/tree/thesis

55

https://www.tensorflow.org/probability
https://github.com/MaxGrtz/bayesian-inference/tree/thesis


56 CHAPTER 5. EVALUATION

5.1.1 MCMC and VI Implementation

The MCMC algorithm is of a very simple structure. In addition to the Bayesian model and a dataset,

it requires a transition kernel, e.g., the HMC kernel or variants thereof. The fit method basically

is just a high level wrapper around the MCMC sampling function implemented by TFP. Given a

number of chains, a number of samples and initial states for each chain, the method returns the

sample results in a wrapper providing access to relevant statistics and diagnostics.

The VI algorithm, on the other hand, requires a so called surrogate posterior � ⇥ and a discrepancy

function d : R �! R. The surrogate posterior implements a variational family as a TFP distribution

with trainable parameters. It is fitted to the true posterior distribution ⇡⇥|Y N using gradient descent

based optimization techniques. A discrepancy function d represents a convex function f in logarithm

space, such that d � log = f . Such functions can then in turn be used to define f -divergences (2.3):

Df (⇡||�) := E�

f � d⇡

d�

�
= E�


d � log �d⇡

d�

�
, (5.1)

where ⇡ and � are probability distributions. The reverse KL-divergence is recovered with the choice

d(u) = �u. In the documentation of TFP, there is a simple proof provided for a general variational

loss function derived from any f -divergence, which for the Bayesian inference problem takes the

form:

F( ) := E
�
 
⇥

"
d � log �dµ

D

⇥

d�
 

⇥

#
, (5.2)

where µD

⇥ is the unnormalized posterior. It includes the variational free energy derived in this thesis

as a special case. For computations it is convenient to introduce the Lebesgue base measure �, such

that the variational loss can be expressed in terms of densities:

F( ) = E
�
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= E
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5 = E
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⇥

h
d � (log p(D, ·)� log q (·))

i
,

(5.3)

where p(D, ·) and q
 (·) are the densities of µD

⇥ and � ⇥, respectively. Note that TFP not only im-

plements various discrepancy functions, but also provides a general method for the corresponding

optimization. The developed package, however, implements a custom fit method, additionally han-

dling frequently occurring numerical problems and, for convenience, allowing for the display of a

progress bar. Moreover, it provides a stochastic fit method, which is particularly useful for large

datasets, implementing stochastic variational inference following Ho↵man et al. (2013). In either

case, the fit methods return a TFP distribution that approximates the true posterior and the history

of the losses over the optimization.
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5.1.2 ADVI and Normalizing Flows Implementation

As mentioned in the previous section, the VI algorithm requires the choice of a surrogate posterior.

Using, for example, the Gaussian family to define a surrogate posterior leads to so called full rank

automatic di↵erentiation variational inference (ADVI). If the Gaussian family is restricted to have

a diagonal covariance matrix instead, this implements mean field ADVI (Kucukelbir et al., 2016).

Surrogate posteriors based on normalizing flows are simply implemented as TFP transformed

distributions, which consist of a base distribution and a bijector with trainable parameters. The

density computations here automatically use the inverse transformation of the bijector, evaluate the

log density of the base distribution and add the log Jacobian determinant correction term. It is

trivial to define di↵erent normalizing flows by writing custom trainable bijectors, sub-classing the

TFP bijector base class. Compositions of normalizing flows are easily implemented using the chain

bijector provided by TFP, which wraps a list of bijectors and applies them sequentially. TFP even

provides a bijector for defining continuous normalizing flows, called FFJORD (Grathwohl et al.,

2018), which uses Hutchinson’s trace estimator and implements the adjoint sensitivity method for

the gradient computations.

For all of the above surrogate posteriors, and more generally for all those that allow for pathwise

gradient estimators as described in equation (3.14), variational Bayesian inference can be imple-

mented by Algorithm 1. Surrogate posteriors that are, in the language of TFP, not reparameteri-

zable, i.e. do not allow for pathwise gradient estimators, require an appropriate adaptation of the

gradient approximation.

Algorithm 1: General Variational Bayesian Inference

Require: dataset D and unnormalized posterior µD

⇥ with density p(D, ✓),

surrogate posterior � ⇥ = ⌘⇥⇥A � (f )�1 with density q
 (✓),

discrepancy function d,

number of optimization steps L,

sample size N,

optimizer opt

for L steps do

(✓n)N
n=1 ⇠ �

 

⇥; // draw N samples from surrogate posterior

F  1
N

P
N

n=1 d
�
log p(D, ✓

n)� log q (✓n)
�
; // approx. loss

grads r F ; // compute gradients w.r.t. variational parameters

opt.apply gradients(grads, ); // update variational parameters

end

Return : approximate posterior �†⇥ with the final variational parameters  †



58 CHAPTER 5. EVALUATION

To implement augmented normalizing flows, the base distribution and the normalizing flow are

defined on an augmented space. The unnormalized target measure is lifted onto this space, as

described in Section 3.5.1, by a conditional distribution, which will be referred to as the posterior

lift distribution. A general implementation of Bayesian inference with augmented normalizing flows

thus is provided by Algorithm 2.

Algorithm 2: Variational Bayesian Inference with Augmented Normalizing Flows

Require: dataset D and unnormalized posterior µD

⇥ with density p(D, ✓),

posterior lift distribution ⇡A|⇥ with density p(a|✓),
surrogate posterior � ⇥⇥A

= ⌘⇥⇥A � (f )�1 with density q
 (✓, a),

discrepancy function d,

number of optimization steps L,

sample size N,

optimizer opt

for L steps do

(✓n, an)N
n=1 ⇠ �

 

⇥⇥A
; // draw N samples from surrogate posterior

F  1
N

P
N

n=1 d
�
log p(D, ✓

n) + log p(an|✓n)� log q (✓n, an)
�
; // approx. loss

grads r F ; // compute gradients w.r.t. variational parameters

opt.apply gradients(grads, ); // update variational parameters

end

(✓n, an)K
n=1 ⇠ �

†
⇥⇥A

; // draw K samples from trained surrogate posterior

Return : empirical distribution((✓n)K
n=1),

approximating the marginal distribution over the model parameters

5.1.3 Hamiltonian Normalizing Flows Implementation

As discussed in the theory of this thesis, HNFs can be considered volume preserving augmented

normalizing flows, where the number of dimensions of the augmentation space is equal to the number

of dimensions of the parameter space. The augmented space then corresponds to phase space. A

HNF finally is implemented as a bijector, which on construction is supplied trainable kinetic and

potential energy functions, e.g. via neural networks, and a symplectic integrator, e.g. the leapfrog

integrator, with information about the step size and number of integration steps. The forward and

inverse transformations of this bijector are then simply the evolution of the system defined by the

energy functions, forward and backwards in time, as computed by the symplectic integrator. In

particular, the bijector just applies zero as the log Jacobian determinant correction, since it is by

construction volume preserving.
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The general implementation of the Hamiltonian flow bijector was verified by reproducing the

results for density estimation reported by Toth et al. (2019). Their implementation is however only

applicable in the density estimation context, which is quite di↵erent from the Bayesian inference

case.

Algorithm 3 shows a possible implementation of variational Bayesian inference with HNFs for

the particular case of choosing the variational loss derived from the reverse KL-divergence, which

simplifies the computation significantly. It should be noted, however, that the actual implementation

used for the experiments realizes the more general version shown in Algorithm 2, which allows

for the choice of any discrepancy function, sacrificing some e�ciency by computing an additional

optimization irrelevant term in the KL-divergence case.

Algorithm 3: Bayesian Inference with Hamiltonian Normalizing Flows

Require: dataset D and unnormalized posterior µD

⇥ with density p(D, ✓),

posterior lift distribution ⇡P |⇥ with density p(p|✓),
surrogate posterior � ⇥⇥P

= ⌘⇥⇥P � (f )�1 with density q
 (✓, p),

where f
 implements a HNF or a composition of them,

number of optimization steps L,

sample size N,

optimizer opt

for L steps do

(✓n, pn)N
n=1 ⇠ �

 

⇥⇥P
; // draw N samples from surrogate posterior

F  � 1
N

P
N

n=1 log p(D, ✓
n) + log p(pn|✓n); // approx. loss

grads r F ; // compute gradients w.r.t. variational parameters

opt.apply gradients(grads, ); // update parameters

end

(✓n, pn)K
n=1 ⇠ �

†
⇥⇥P

; // draw K samples from trained surrogate posterior

Return : empirical distribution((✓n)K
n=1),

approximating the marginal distribution over the model parameters

5.2 Experiments

To test the implementation of HNFs for Bayesian inference as described above, this section inves-

tigates two examples. The first will be a univariate Gaussian generative model. The second is a

simple linear regression, to show that the algorithm works for regression models as well. The results

will be compared to those of the Hamiltonian Monte Carlo method, which is assumed to yield the
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true posterior for such simple models and a su�ciently high number of samples per Markov chain.

Additionally, the experiments will involve a comparison to other surrogate posteriors like mean field

ADVI and various normalizing flows.

For each surrogate posterior the average runtime, final loss F , posterior mean and standard

deviation error, as well as the Wasserstein distance W2 of the posterior approximation to the true

posterior, as provided by the HMC method, are reported.

In general, the Wasserstein distance Wp is a metric on the space of probability distribution over

a metric space (Q, d). It is defined as:

Wp(⇡, �) :=

 
inf

⇢Q⇥Q2⇤(⇡,�)

Z

Q⇥Q

d(q1, q2)
p
⇢Q⇥Q(dq1, dq2)

! 1
p

⇡, � 2 ⇧(Q), p � 1 2 R, (5.4)

where ⇤(⇡, �) denotes the set of all joint distribution over Q ⇥ Q with marginal distributions ⇡, �

(Villani, 2009). In the present case Q is a Euclidean space, i.e. a vector space Q = Rd equipped

with the standard inner product. This inner product not only induces a corresponding norm, but

in turn a metric:

d2(x, y) =

vuut
dX

i=1

(xi � yi)2. (5.5)

The Wasserstein metric W2 on the space of distributions, based on the metric d2 of the underlying

space, will be computed using the linear programming solution provided by the Python Optimal

Transport (POT) package (Flamary & Courty, 2017).

Intuitively, think about the so called transport cost of transforming one distribution into the

other according to a particular transport map, where the cost is determined by how much mass

this map moves how far. The optimal transport map is then the one with minimal cost. The

Wasserstein metric corresponds exactly to this minimal transport cost. As a side note, the whole

theory of normalizing flows can be formulated in terms of optimal transport theory instead of taking

the change of variable perspective used in this thesis (Papamakarios et al., 2019).

5.2.1 HMC Configuration

To be more specific, the experiments will use the state of the art HMC kernel with dynamic in-

tegration time to get a baseline solution for the posterior distribution. This variant is referred to

as the No-U-Turn sampler (NUTS) and was proposed by Ho↵man and Gelman (2011). The dual

averaging step size adaptation, proposed in the same paper, is used to optimize the step size choice

for the geometry of the given problem during the warm-up phase of the sampling process. The

experiments will run 5 chains with 1, 000 samples each, with an additional warm-up phase of 10, 000

samples per chain. This will yield a total of 5, 000 samples to approximate and visualize the posterior

distributions for each parameter.
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5.2.2 VI Configurations

For all surrogate posteriors the variational loss will be based on the KL-divergence. The optimization

is run for L = 10, 000 iterations, using the Adam optimizer. The initial learning rate will be chosen

for each surrogate posterior individually, balancing convergence speed and stability, and reported

along with the results. On each iteration the sample size to approximate the variational loss is

N = 50. The marginal posteriors for each parameter are approximated with K = 10, 000 samples.

Finally, those distributions can then be used to generate arbitrarily many posterior samples per

parameter. The experiments will again use 5, 000 samples to visualize the posteriors and compute

the defined error metrics.

ADVI and Normalizing Flow Configurations

A good baseline reference for variational inference solutions is provided by mean field ADVI. This

surrogate posterior requires no further configuration. For all surrogate posteriors based on normal-

izing flows the base distribution is chosen to be a standard Gaussian. The experiments will consider

an a�ne normalizing flow, which e↵ectively yields a full rank ADVI, a masked autoregressive flow

(Papamakarios et al., 2017) and a continuous normalizing flow. The masked autoregressive flow

(maf) is defined by an autoregressive neural network with two hidden layers [128, 128] and tanh

non-linearities, while the continuous normalizing flow (cnf) is defined by a FFJORD bijector, where

the derivative function is defined by a neural network with layers [d+ 1, 128, 128, d] and tanh non-

linearities. Note that d corresponds to the dimension of the parameter space, while the additional

input dimension e↵ectively allows to model a time dependent derivative function. The FFJORD

bijector uses a Dormand-Prince ODE solver (Shampine, 1986) with an initial step size of 0.1 and

the trace of the Jacobian is approximated using Hutchinson’s trace estimator.

Hamiltonian Normalizing Flow Configuration

The exact configuration of the HNFs for both experiments will be as follows. Every experiment

will consider a single (hnf(1)), a composition of two (hnf(2)) and a composition of three (hnf(3))

HNFs. The posterior lift distribution is defined via a conditional diagonal Gaussian, where the

location and scale depend on the parameters via neural networks with layers [d, 128, 128, d] and

ReLu non-linearities for the hidden layers. Note that d again is the dimension of the parameter

space. The network parameterizing the location has a linear output layer, while the scale network

has a softplus output layer. The kinetic and potential energies are defined via neural networks with

layers [d, 128, 128, 1]. The networks have tanh non-linearities for the hidden layers and a softplus

non-linearity at the output to enforce positivity of the energy functions. Note that ReLu non-

linearities would not be an option here, because the energy functions need to be twice continuously

di↵erentiable. This is the case, because the symplectic integration already uses first order derivatives,
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such that the gradient computation requires second order derivatives of the energy functions. The

initial step size for the symplectic integration is set to 0.1, but will be optimized along with the

variational parameters. The number of integration steps for each flow is fixed to 2.

The composition of multiple HNFs simulates something like a time dependence, similar to the

extra time parameter in continuous normalizing flows. It will be investigated whether this has a

positive e↵ect on performance as measured by the defined error metrics. In general, note that the

HNFs have considerably more parameters than all the other defined flows. This aims at compensating

for the reduced expressive power.

5.2.3 Univariate Gaussian Model

Starting with the univariate Gaussian example, it is first necessary to create a test dataset. To

test how reliable the inference results are, this experiment will consider 10 di↵erent datasets. Those

will be generated by known distributions defined by Gaussian densities with di↵erent location and

scale parameters µ
⇤
,�

⇤. For the evaluation of the inference results it is convenient to know these

ground truth parameter values. Each dataset will consist of 100 examples, i.e. D = (yi)100i=1 with

yi ⇠ N (µ⇤
,�

⇤). The next step is to define a full Bayesian model:

µ ⇠ N (0, 10)

� ⇠ Half-Normal(10)

yi ⇠ N (µ,�).

(5.6)

Defining this model in the developed package is as simple as providing an ordered dictionary of

the prior distributions for µ and � and a likelihood function taking the parameters and returning a

normal distribution. To allow computations on an unconstrained parameter space, it is necessary

to define a list of bijectors, which unconstrain each parameter. If no list is provided, bijectors for

each parameter are chosen based on the defaults defined by TFP for each distribution. The location

parameter µ is already unconstrained, such that the corresponding bijector is simply the identity

map. The scale parameter � however is constrained to be positive, such that the default choice of

bijector is the softplus transformation s(x) = log(1 + exp(x)). The softplus bijector takes any real

number and returns a positive real number, such that its inverse transformation unconstrains the

scale parameter to the complete real line. Note, that the exponential map would be a possible choice

as well, but is much more prone to numerical instabilities.

The ground truth parameters for each test dataset will just be sampled from the prior distri-

butions of the defined model and reported along with the inference results. Detailed overviews are

provided in Appendix A.
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5.2.4 Linear Regression Model

For this simple linear regression example, the experiment will consider again 10 datasets of 100

examples each, where every example is a tuple of features and targets, i.e. D = (xi, yi)100i=1. A

regression model then tries to model the relationship between x and y. In this example we consider

a linear relationship yi = �0 + xi�1 + ✏i, where the ✏i capture the uncertainties and are assumed to

be normally distributed with scale �, i.e. ✏i ⇠ N (0,�). Each test dataset is generated by di↵erent

ground truth parameters �⇤
0 ,�

⇤
1 ,�

⇤ and the full Bayesian model considered in this experiment can

be summarized as:
�0 ⇠ N (0, 10)

�1 ⇠ N (0, 10)

� ⇠ Half-Normal(10)

yi ⇠ N (�0 + xi�1,�),

(5.7)

where the features are sampled from a Gaussian with a fixed scale, that is xi ⇠ N (0, 10). As in

the univariate Gaussian model, it is necessary to define the bijectors, which allow computations to

be done on an unconstrained parameter space. It is obvious, that for �0,�1 the identity map is

su�cient, whereas the scale � can be unconstrained using the softplus bijector.

The ground truth parameters for each test dataset will again just be sampled from the prior

distributions of the defined model and reported along with the inference results. Detailed overviews

are provided in Appendix A.

5.3 Inference Results

This section summarizes the experiment results. The visualizations and detailed statistics are re-

stricted to dataset 1, while the final summary tables aggregate the results of all datasets. The

corresponding plots and tables for the remaining datasets can be found in the GitHub repository3

associated with this thesis.

5.3.1 Univariate Gaussian Model - Inference Results

First, consider the visualization of dataset 1 in Figure 5.1. It shows a histogram and the estimated

density of the dataset together with the true generating location parameter. More detailed infor-

mation about the dataset is summarized in Table 5.1. The corresponding information about all the

other datasets is available in Appendix A.

3
url: https://github.com/MaxGrtz/bayesian-inference/tree/thesis

https://github.com/MaxGrtz/bayesian-inference/tree/thesis
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Figure 5.1: Histogram and density of the data with true location (univariate Gaussian dataset 1).

Table 5.1: Detailed summary of univariate Gaussian dataset 1.

true sample statistics

dataset loc scale # samples mean sd HDI 3% HDI 97%

dataset 1 3.51 1.66 100 3.37 1.65 0.42 6.64

The next paragraphs will summarize the inference results of the HMC method and the variational

inference results for each surrogate posterior.

HMC Inference Results

The baseline solution to the Bayesian inference problem is provided by the HMC method. Figure 5.2

shows a plot of the sample trace and approximate posterior density for each parameter, while Table

5.2 and Table 5.3 summarize the inference results and relevant diagnostics to evaluate convergence

of the generated Markov chains.
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Figure 5.2: Density and trace plot for posterior parameter samples (univariate Gaussian dataset 1).

Table 5.2: HMC summary statistics and diagnostics (univariate Gaussian dataset 1).

statistics diagnostics

param mean sd HDI 3% mode HDI 97% mcse-mean ess-mean R̂

loc 3.37 0.16 3.05 3.37 3.67 0.00 3885.56 1.00

scale 1.68 0.12 1.47 1.67 1.94 0.00 4056.92 1.00

Table 5.3: HMC runtime and acceptance ratios per chain (univariate Gaussian dataset 1).

acceptance ratio

dataset runtime [s] chain 1 chain 2 chain 3 chain 4 chain 5

dataset 1 36.40 0.851 0.857 0.872 0.850 0.842

Table 5.3 shows high acceptance rates for the HMC proposed samples in each chain and a total

runtime of 36.4 seconds. The statistics of Table 5.2 summarize the information about the estimated

posterior distribution for each parameter, which are visualized in the density plots of Figure 5.2.

They show that the posterior approximations contain the true parameter values in their highest

density intervals and the posterior sample means are close to the true values. The diagnostics,

in particular the potential scale reduction factor R̂, computed according to Vehtari et al. (2019),

clearly indicate the successful convergence of the generated Markov chains, which is corroborated

visually by the trace plots of Figure 5.2. The ess-mean is the total estimated e↵ective sample size
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over all 5 chains, given the 5000 correlated samples generated. Intuitively, it measures the number

of e↵ectively independent samples, considering the autocorrelation of the Markov chains. Together

with the mcse-mean, i.e. the Monte Carlo standard error, which is a measure for how close the

posterior mean estimate is to the true posterior mean, this is a good indicator for the chains to

have, in fact, converged to the true posterior. It is thus reasonable to assume that, at least for

dataset 1, the generated posterior samples are representative of the true posterior distribution for

both parameters.

Appendix B extends the above tables to all datasets. It is apparent from those summaries that

the generated Markov chains on datasets 5 and 7 did not converge su�ciently well, such that the

results for those datasets will be discarded, since they cannot provide a reliable baseline solution.

Variational Inference Results

To investigate the variational inference results for each surrogate posterior, it is useful to first

consider the convergence behavior of the respective optimization processes. Figure 5.3 visualizes the

variational loss history for each surrogate posterior on dataset 1 as a smoothed curve. The smoothing

is done for the purpose of clarity, using an exponentially weighted moving average with smoothing

factor ↵ = 0.1. The x-axis, representing the number of iterations, is logarithmically scaled, such

that the early phase of the optimization is more clearly visible.

Figure 5.3: Variational loss history for each surrogate posterior (univariate Gaussian dataset 1).

The plot shows a stable optimization behavior and convergence for all surrogate posteriors on

dataset 1. It is, however, clearly noticeable on other datasets, and in a non-smoothed version of the

plot, that HNFs show a much less stable learning behavior than ADVI and the other normalizing

flows (see Appendix C). Figure 5.4 visualizes the approximate posterior density according to each
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surrogate posterior, while Table 5.4 summarizes the posterior statistics and error metrics w.r.t. the

true posterior, as provided by the HMC solution.

Figure 5.4: Posterior density estimates for each surrogate posterior (univariate Gaussian dataset 1).

Table 5.4: Statistics and error metrics for each surrogate posterior (univariate Gaussian dataset 1).

statistics error metrics

param surr. posterior mean sd HDI 3% mode HDI 97% mean err. sd err. W2

loc meanfield advi 3.38 0.17 3.07 3.37 3.69 0.00616 0.00353 0.00907

a�ne flow 3.38 0.17 3.06 3.38 3.68 0.01073 0.00219 0.01280

maf 3.38 0.17 3.06 3.38 3.70 0.01099 0.00543 0.01299

cnf 3.37 0.16 3.07 3.37 3.68 0.00499 0.00246 0.00697

hnf(1) 3.42 0.19 3.08 3.43 3.78 0.05635 0.02307 0.06148

hnf(2) 3.37 0.17 3.06 3.37 3.71 0.00415 0.01041 0.01410

hnf(3) 3.37 0.17 3.04 3.37 3.69 0.00514 0.01028 0.01211

scale meanfield advi 1.67 0.12 1.46 1.67 1.89 0.01218 0.00430 0.01625

a�ne flow 1.68 0.12 1.46 1.68 1.90 0.00082 0.00489 0.01045

maf 1.65 0.12 1.43 1.65 1.88 0.03180 0.00365 0.03348

cnf 1.67 0.12 1.46 1.66 1.93 0.00949 0.00139 0.01046

hnf(1) 1.69 0.13 1.46 1.68 1.92 0.00412 0.00300 0.01214

hnf(2) 1.70 0.12 1.49 1.69 1.96 0.01700 0.00198 0.01756

hnf(3) 1.71 0.12 1.50 1.70 1.97 0.03062 0.00113 0.03110

On dataset 1, all surrogate posteriors provided reasonably good approximations to the true

posterior. The single Hamiltonian flow (hnf(1)) showed clearly worse performance for the location

parameter’s posterior approximation, when compared to the other surrogate posteriors. For the

results on the remaining datasets refer to Appendix C.

Since the performance on a single dataset is not necessarily representative, a possible approach

is to average the performance metrics over all datasets (excluding the discarded datasets 5 and
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7) and parameters. This, however, renders the error metrics themselves non-interpretable due to

the di↵erent scales of the parameter values involved. Only the comparison between the di↵erent

surrogate posteriors remains meaningful. Note also that, with this approach, the datasets will have

di↵ering impact on the average performance metrics, depending on the magnitude of the parameter

values. A better approach would be to compute a relative distance measure, that is independent

of the scale of the values. This e↵ect, however, is probably negligible for this experiment, since the

results in Appendix C show that the error metrics are mostly in the same order of magnitude for

all datasets (except for the discarded ones). Table 5.5 summarizes the average performance of each

surrogate posterior.

Table 5.5: Average performance metrics for each surrogate posterior.

surr. posterior learning rate runtime [s] final loss mean err. sd err. W2

meanfield advi 5⇥ 10
�3

10.135 261.165 0.01453 0.01011 0.02919

a�ne flow 5⇥ 10
�3

13.468 261.165 0.01190 0.00890 0.02810

maf 5⇥ 10
�3

22.179 261.259 0.02709 0.02802 0.04726

cnf 1⇥ 10
�4

870.719 261.185 0.02807 0.00723 0.03527

hnf(1) 1⇥ 10
�3

57.935 262.489 0.10938 0.03661 0.12462

hnf(2) 1⇥ 10
�3

93.509 261.396 0.09005 0.01888 0.10394

hnf(3) 1⇥ 10
�3

132.161 261.364 0.07962 0.01573 0.08624

There are a few relevant observations to make. First, meanfield ADVI and the a�ne flow, which

is equivalent to full rank ADVI, perform about equally well and better than all other surrogate

posteriors. Due to the simple structure of the univariate Gaussian model, it is expected that they

perform comparably well. They are also the most e�cient approximations, with the lowest average

runtimes.

HNFs show the worst performance as measured by the average posterior mean and standard

deviation errors, as well as the Wasserstein distance to the HMC baseline solution. There is, however,

a clearly noticeable performance improvement from a single HNF (hnf(1)) to a composition of

three (hnf(3)). It is also interesting to note that even the composition of three Hamiltonian flows

has a lower average runtime than the continuous normalizing flows (cnf), almost by a factor 7,

although the Hamiltonian flows have much more parameters. This is probably due to the fact that

Hamiltonian flows are restricted to two integration steps per flow with trainable step size. The

computational costs are therefore fixed for each integration. The continuous normalizing flow on the

other hand also uses an adaptive step size, but always integrates for a total time of 1, such that the

integration cost depends on the step size. This makes it hard to meaningfully compare the runtimes

of Hamiltonian and continuous normalizing flows, at least given the implementations used for the

current experiments.
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Posterior Predictive Check

Finally, another useful way of evaluating the inference results for models with such low dimensional

target spaces, is to produce posterior predictive samples and visually inspect whether or not those

samples are close to the underlying data. The predictive samples are generated by taking 1000

approximate posterior samples and generating a data sample for each one of them, based on the

data distribution. Figure 5.5 shows the approximate posterior predictive densities for HMC and all

variational inference results.

Figure 5.5: Posterior predictive check (univariate Gaussian dataset 1).

Visual inspection shows no clear di↵erences between the predicted data based on the posterior

estimate of HMC and all variational inference results. This allows at least to conclude that HNFs,

as implemented, are generally capable of solving the Bayesian inference problem.

5.3.2 Linear Regression Model - Inference Results

For the second experiment, again consider the visualization of dataset 1 in Figure 5.6. It shows a

scatter plot of the data, together with the true linear relationship between the variables x and y.

More detailed information about the dataset is summarized in Table 5.6.
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Figure 5.6: Scatter plot of the data with true regression line (linear regression dataset 1).

Table 5.6: Detailed information about linear regression dataset 1.

true sample statistics

dataset beta0 beta1 scale # samples \beta0 \beta1 [scale

dataset 1 -7.53 1.31 15.03 100 -8.30 1.39 15.04

The sample statistics \beta0 and \beta1 in Table 5.6 are computed using standard linear regression4

on the data. The estimate [scale is simply the standard deviation of the prediction error of this

regression line w.r.t. the data. The corresponding tables for the remaining datasets can be found in

Appendix A.

HMC Inference Results

The baseline solution to this Bayesian inference problem is again provided by the HMC method.

4
using numpy.polyfit with degree 1
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Figure 5.7: Density and trace plot for posterior parameter samples (linear regression dataset 1).

Figure 5.7 shows a plot for the posterior trace and density of each model parameter, while Table

5.7 and Table 5.8 summarizes the inference results and relevant diagnostics to evaluate convergence

of the generated Markov chains.

Table 5.7: HMC summary statistics and diagnostics (linear regression dataset 1).

statistics diagnostics

dataset param mean sd HDI 3% mode HDI 97% mcse-mean ess-mean R̂

dataset 1 beta0 -8.08 1.54 -10.92 -8.09 -5.11 0.04 1750.19 1.00

beta1 1.39 0.16 1.08 1.40 1.70 0.00 4673.37 1.00

scale 15.21 1.11 13.29 15.16 17.44 0.02 2285.59 1.00
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Table 5.8: HMC runtime and acceptance ratios per chain (linear regression dataset 1).

acceptance ratio

dataset runtime [s] chain 1 chain 2 chain 3 chain 4 chain 5

dataset 1 203.48 0.939 0.956 0.945 0.957 0.952

Table 5.8 shows a total HMC runtime of 203.48 seconds, which is considerably higher than for the

univariate Gaussian experiment. Table 5.7 again shows that the posterior approximations contain

the true parameter values in their highest density intervals and the posterior sample means are close

to the true values. Together with the diagnostics, this indicates convergence of the chains to the

true posteriors, following the same reasoning as in the previous experiment.

Refer to Appendix B for the extension of the above tables to all datasets. Those summaries

suggest that datasets 2 and 6 should be discarded, because of insu�cient convergence of the Markov

chains. The results for all other dataset are again used as baselines for an evaluation of the variational

inference results.

Variational Inference Results

The variational inference optimization process for each surrogate posterior is visualized in Figure

5.8 by a smoothed loss curve. Again the curve is smoothed using an exponentially weighted moving

average with the same smoothing factor ↵ = 0.1 as in the previous experiment. The less stable

optimization behavior of HNFs mentioned before, is even more obvious in this experiment.

Figure 5.9 shows the posterior density plots for each surrogate posterior. Note that the plots

for dataset 1 suggest that the posterior estimates for hnf(3) seem to diverge slightly from those

of the other surrogate posteriors. This is also clearly noticeable in the statistics and error metrics

summarized in Table 5.9.

Finally, Table 5.10 averages the performance of each surrogate posterior over all datasets (ex-

cluding the discarded datasets 2 and 6) and parameters. As in the previous experiment meanfield

ADVI and the a�ne flow still obviously have not only the lowest runtimes, but also perform best

according to the error metrics. While HNFs again show the worst performance, it is clear that the

composition of multiple flows provides significant improvements. The runtime of hnf(3) is again

lower than that of continuous normalizing flow (cnf) by a factor of 7.
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Figure 5.8: Variational loss history for each surrogate posterior (linear regression dataset 1).

Figure 5.9: Posterior density estimates for each surrogate posterior (linear regression dataset 1).
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Table 5.9: Statistics and error metrics for each surrogate posterior (linear regression dataset 1).

statistics error metrics

param surr. posterior mean sd HDI 3% mode HDI 97% mean err. sd err. W2

beta0 meanfield advi -8.07 1.53 -10.93 -8.13 -5.16 0.00794 0.00925 0.06954

a�ne flow -8.10 1.47 -10.84 -8.10 -5.37 0.02449 0.07048 0.10737

maf -8.15 1.54 -11.07 -8.13 -5.20 0.07078 0.00179 0.11805

cnf -8.22 1.55 -11.02 -8.24 -5.27 0.14640 0.00993 0.17920

hnf(1) -8.20 1.46 -10.91 -8.21 -5.43 0.12297 0.07989 0.16314

hnf(2) -8.38 1.44 -11.14 -8.35 -5.62 0.30453 0.10555 0.33426

hnf(3) -7.70 1.45 -10.43 -7.69 -5.01 0.37770 0.08911 0.39520

beta1 meanfield advi 1.39 0.16 1.08 1.40 1.70 0.00379 0.00154 0.00624

a�ne flow 1.39 0.16 1.09 1.39 1.70 0.00120 0.00055 0.00723

maf 1.37 0.16 1.07 1.37 1.66 0.02273 0.00659 0.02452

cnf 1.41 0.17 1.08 1.41 1.72 0.01669 0.00590 0.01854

hnf(1) 1.32 0.18 0.98 1.33 1.65 0.06637 0.02195 0.07171

hnf(2) 1.39 0.17 1.06 1.39 1.71 0.00136 0.00809 0.01042

hnf(3) 1.35 0.16 1.05 1.34 1.67 0.04308 0.00190 0.04467

scale meanfield advi 15.18 1.05 13.22 15.19 17.17 0.03200 0.05981 0.11950

a�ne flow 15.22 1.02 13.36 15.19 17.18 0.00828 0.08827 0.12765

maf 15.09 1.10 13.00 15.10 17.17 0.11895 0.00347 0.16111

cnf 15.14 1.03 13.27 15.10 17.18 0.07328 0.07545 0.12484

hnf(1) 15.40 1.07 13.60 15.39 17.38 0.19106 0.03727 0.30292

hnf(2) 15.10 1.07 13.15 15.07 17.18 0.11467 0.04092 0.13654

hnf(3) 14.98 1.02 13.18 14.96 17.00 0.22803 0.08990 0.25141

Table 5.10: Average performance metrics for each surrogate posterior.

surr. posterior learning rate runtime [s] final loss mean err. sd err. W2

meanfield advi 5⇥ 10
�3

14.542 374.279 0.01911 0.02077 0.05113

a�ne flow 5⇥ 10
�3

19.796 374.278 0.01626 0.02568 0.05282

maf 5⇥ 10
�3

31.312 374.670 0.05430 0.02523 0.07828

cnf 1⇥ 10
�4

1218.760 374.272 0.04846 0.01371 0.06782

hnf(1) 1⇥ 10
�3

71.550 379.370 0.13793 0.07234 0.18420

hnf(2) 1⇥ 10
�3

118.916 375.091 0.10836 0.04503 0.14793

hnf(3) 1⇥ 10
�3

160.656 374.820 0.09341 0.02792 0.10949
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Posterior Predictive Check

Figure 5.10 shows standard regression lines computed on posterior predictive samples for each infer-

ence algorithm. The predictive samples are generated by taking 100 posterior samples and, for each

one, producing 100 samples of target value predictions for each feature value of the dataset.

Although this choice of visualization does not capture the variance of the data around the lin-

ear relationship, it still is a good visual indication for the fact that all inference methods provide

reliable solutions to this inference problem. In particular, in allows to conclude that HNFs are

straightforwardly applicable to regression models as well.

Figure 5.10: Posterior predictive check (linear regression dataset 1)

5.4 Discussion

The experiment results presented in the previous section conclusively show that HNFs, as described

in this thesis, provide reliably good results for simple Bayesian inference problems. They are ap-

plicable for generative and regression models alike and are capable of very closely recovering the

baseline solutions provided by the HMC method, at least according to the error metrics used for

the performance evaluation. Although HNFs perform worse, in this respect, than the other surro-

gate posteriors, they show improved results for compositions of multiple flows. Besides the visual

posterior predictive check, the quality of the inference results was measured primarily based on the

Wasserstein distance W2 of the posterior approximation to the baseline result of the HMC method.

A notable disadvantage of HNFs is the aforementioned less stable optimization behavior. Al-

though this might be an artifact of the implementation, it can be seen in exploratory experiments,

accessible in the associated GitHub repository, that they show a more stable optimization behavior

for variational Bayesian inference on a univariate Gaussian mixture model. This is somewhat sur-

prising, because mixture models are usually considered more complex due to having multiple modes.

In particular, they pose a significant challenge to the HMC method (Betancourt et al., 2014). In

attempts to apply Hamiltonian flows to generalized linear models with random e↵ects, it was not

possible to achieve convergence with any of the tested configurations. More research is therefore
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necessary to investigate their applicability to statistical models, which are more typically used in

practice.

The results also show high runtimes for HNFs compared to other surrogate posteriors except for

continuous normalizing flows. The HMC method had lower runtimes as well, when considering the

fact that the reported time includes the unusually long warm-up phase of 10.000 samples per chain,

which was only necessarily to provide su�ciently reliable baseline results. It is not clear whether or

not the runtimes can be improved significantly with more e�cient implementations. An advantage

over the HMC method is only provided by the opportunity for applying stochastic optimization

techniques in case of exceedingly large datasets. This is, however, not investigated further in this

thesis.

Finally, it should be noted that the experiments, as they are designed, do not allow conclusive

judgement about the performance and e�ciency of any of the surrogate posteriors used for variational

inference, because the configurations were arbitrarily chosen and no e↵ort was made to assess the

actual convergence speed. The primary objective of the experiments was to qualitatively evaluate

whether or not HNFs are capable of solving the Bayesian inference problem for simple models.
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Conclusion

The goal of this thesis was to present the mathematical foundations of Hamiltonian normalizing

flows on the level of measure theory and consider their application in the context of variational

Bayesian inference.

Chapter 1 introduced the necessary mathematical notation and foundations of Bayesian infer-

ence. The primary realization was that the problem of fitting a Bayesian model to a dataset, can

be reduced to the problem of generating posterior samples. This is true because one is mostly inter-

ested in evaluating expectations with respect to the posterior distribution, e.g., for the purpose of

summarizing its structure or making predictions about new data, which is most e�ciently done via

Monte Carlo approximations. The chapter closed with a brief review of sampling approaches and

the state of the art Hamiltonian Monte Carlo method for generating posterior samples.

Variational inference was discussed as an optimization based approach to the Bayesian inference

problem in Chapter 2. In general, it relies on the idea of defining a variational family of distributions

and minimizing a divergence measure to a target distribution. In particular, this is applicable to the

Bayesian inference problem, where the target distribution corresponds to the posterior. Variational

inference allows to scale Bayesian inference to large datasets by making use of stochastic optimization

techniques.

Normalizing flows provide a means of defining rich variational families as all the push-forwards

of some base distribution along a parameterized di↵eomorphism. They were discussed in detail in

Chapter 3, highlighting the application to variational Bayesian inference. Residual normalizing flows

have a very specific structure, resembling that of residual neural networks. Considering the limit of

infinitely many residual flows lead to the idea of continuous normalizing flows, which are defined by

ordinary di↵erential equations. This chapter concluded with two extensions or variants of continuous

normalizing flows—augmented and volume preserving flows.

After outlining the Hamiltonian formalism of classical mechanics, Chapter 4 introduced Hamilto-

nian normalizing flows as volume preserving augmented continuous normalizing flows and discussed

77
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their application to variational Bayesian inference. They are fundamentally based on defining a

family of Hamiltonian systems via a parameterized Hamiltonian, such that the associated Hamil-

tonian flows define di↵eomorphisms on phase space, which induce a variational family given some

base distribution.

Chapter 5 discussed the implementation and application of Hamiltonian normalizing flows to

two particular Bayesian models—a univariate Gaussian and a simple linear regression model. In

two experiments the Bayesian inference problem for both models was solved using the Hamiltonian

Monte Carlo method to provide a baseline solution. The performance of variational inference with

di↵erent variational families, i.e., surrogate posteriors, was investigated by comparing the inference

results to those baseline solutions. The experiments were done using a Python software package

for Bayesian inference based on TensorFlow Probability, which was developed in the context of this

thesis. The experiment results clearly indicate that Hamiltonian normalizing flows yield reliably

good solutions to the Bayesian inference problem for simple models. Although the composition of

multiple Hamiltonian normalizing flows improves the quality of the results significantly, ADVI and

other flow based surrogate posteriors still provide better results. Moreover, variational inference

with the current implementation of Hamiltonian normalizing flows shows less stable optimization

behavior than for other surrogate posteriors.

In conclusion, this thesis provides a more rigorous treatment of the theory of Hamiltonian nor-

malizing flows than was provided by (Toth et al., 2019), who initially introduced them in the context

of density estimation. The thesis successfully adapts their approach to allow for the application of

Hamiltonian normalizing flows to Bayesian inference. More generally, the summarized theory and

the developed software package provide a framework for flexibly defining and applying augmented

normalizing flows to Bayesian inference, where Hamiltonian flows are just a special case. Additional

e↵ort is required, however, to improve on the current implementations of the software package.

Finally, to meaningfully assess the performance of Hamiltonian normalizing flows, more rigorous

experiments with more complex models are required. In particular it is necessary to investigate

how restrictive the volume preserving property of Hamiltonian flows is in practice—that is, how

much expressiveness is sacrificed for computational e�ciency. Intuitively, volume preserving flows

only allow for permutations of the base density values over the underlying space. This is similar to

what Papamakarios et al. (2019) observed for discrete flows. This leads to a tight coupling between

the base and transformed densities. An interesting direction for future research thus might be to

evaluate how defining the base distribution itself as a parameterized family of density functions

influences performance and the stability of the optimization process. This is in fact equivalent to

investigating the benefits of combining Hamiltonian normalizing flows with non-volume preserving

flows.
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Experiment Datasets

This appendix reports detailed information for every dataset generated in each experiments.

A.1 Univariate Gaussian Model Datasets

Table A.1 summarizes the true generating location and scale parameters as well as sample statistics

for each dataset.

Table A.1: Univariate Gaussian dataset summaries.

true sample statistics

dataset loc scale # samples mean sd HDI 3% HDI 97%

dataset 1 3.51 1.66 100 3.37 1.65 0.42 6.64

dataset 2 -2.14 2.39 100 -2.03 2.45 -6.40 2.79

dataset 3 11.25 0.53 100 11.33 0.62 10.03 12.36

dataset 4 4.47 3.92 100 4.59 3.69 -2.59 10.29

dataset 5 -5.57 6.97 100 -5.81 7.62 -17.92 8.51

dataset 6 -17.89 11.14 100 -17.12 10.86 -34.69 2.05

dataset 7 4.93 5.56 100 5.14 5.47 -5.77 15.33

dataset 8 -6.42 4.13 100 -7.42 4.24 -15.94 0.02

dataset 9 14.19 1.82 100 13.94 1.82 10.69 17.67

dataset 10 0.82 11.23 100 -0.84 10.13 -19.63 15.15
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A.2 Linear Regression Model Datasets

Table A.2 summarizes the true generating parameters as well as sample statistics for each dataset.

The sample statistics \beta0 and \beta1 in Table 5.6 are computed using standard linear regression

on the data. The estimate [scale is simply the standard deviation of the prediction error of this

regression line w.r.t. the data.

Table A.2: Linear regression dataset summaries

true sample statistics

dataset beta0 beta1 scale # samples \beta0 \beta1 [scale

dataset 1 -7.53 1.31 15.03 100 -8.30 1.39 15.04

dataset 2 16.77 -4.83 2.40 100 17.30 -4.85 2.69

dataset 3 0.30 -4.74 2.34 100 0.18 -4.75 2.11

dataset 4 6.48 14.41 8.92 100 5.13 14.30 9.32

dataset 5 15.75 2.53 15.65 100 17.61 2.64 16.11

dataset 6 5.50 -1.32 16.76 100 4.65 -1.31 16.96

dataset 7 -7.48 3.66 9.57 100 -8.21 3.61 8.52

dataset 8 13.85 -0.74 10.62 100 13.34 -0.83 11.55

dataset 9 0.24 -7.60 7.18 100 1.34 -7.63 6.94

dataset 10 -2.80 5.03 15.82 100 -2.69 5.07 15.78
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HMC Inference Results

This appendix reports the HMC inference results for both experiments.

B.1 Univariate Gaussian Model - HMC Results

Table B.1 shows the total runtimes and acceptance ratios of HMC proposals for each dataset. The

highlighted cells indicate problems, where the initial state never changed, that is all proposals were

rejected. The same problem manifests in Table B.2, where the diagnostics suggest bad convergence

behavior of the Markov chains for the respective datasets, at least when considering all 5 chains.

Since the posterior distribution approximations for those datasets will be unreliable, they cannot be

used as baseline results to which the variational inference solutions are compared. For this reason,

datasets 5 and 7 are ignored in further evaluations.

Table B.1: HMC runtime in seconds and acceptance ratios per chain.

acceptance ratio

dataset runtime [s] chain 1 chain 2 chain 3 chain 4 chain 5

dataset 1 36.40 0.851 0.857 0.872 0.850 0.842

dataset 2 34.70 0.864 0.857 0.865 0.846 0.844

dataset 3 41.37 0.845 0.876 0.848 0.850 0.861

dataset 4 42.81 0.860 0.853 0.868 0.856 0.881

dataset 5 65.74 0.991 0.986 0.000 0.989 0.993

dataset 6 46.62 0.853 0.858 0.847 0.858 0.865

dataset 7 55.34 0.988 0.988 0.989 0.000 0.985

dataset 8 39.90 0.857 0.854 0.852 0.867 0.863

dataset 9 37.62 0.847 0.847 0.843 0.854 0.862

dataset 10 49.15 0.858 0.847 0.848 0.832 0.847
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Table B.2: HMC posterior statistics and diagnostics.

statistics diagnostics

dataset param mean sd HDI 3% mode HDI 97% mcse-mean ess-mean R̂

dataset 1 loc 3.37 0.16 3.05 3.37 3.67 0.00 3885.56 1.00

scale 1.68 0.12 1.47 1.67 1.94 0.00 4056.92 1.00

dataset 2 loc -2.03 0.25 -2.50 -2.03 -1.55 0.00 3695.61 1.00

scale 2.49 0.18 2.18 2.48 2.85 0.00 3746.80 1.00

dataset 3 loc 11.33 0.06 11.21 11.33 11.45 0.00 3907.13 1.00

scale 0.63 0.05 0.55 0.62 0.72 0.00 2680.51 1.00

dataset 4 loc 4.59 0.38 3.87 4.59 5.29 0.01 3546.16 1.00

scale 3.76 0.27 3.28 3.74 4.31 0.00 3429.60 1.00

dataset 5 loc -4.79 2.18 -7.17 -5.60 -0.66 0.92 5.57 1.42

scale 6.27 2.98 0.39 7.55 8.80 1.31 5.18 1.42

dataset 6 loc -16.93 1.07 -18.90 -16.95 -14.86 0.02 3189.86 1.00

scale 10.97 0.77 9.63 10.92 12.51 0.01 3329.51 1.00

dataset 7 loc 3.93 2.49 -0.96 4.97 6.16 1.09 5.24 1.42

scale 4.52 2.12 0.35 5.42 6.34 0.93 5.18 1.42

dataset 8 loc -7.41 0.44 -8.21 -7.41 -6.58 0.01 3397.10 1.00

scale 4.32 0.31 3.79 4.30 4.94 0.01 3416.06 1.00

dataset 9 loc 13.94 0.18 13.59 13.93 14.29 0.00 3684.96 1.00

scale 1.85 0.13 1.62 1.84 2.11 0.00 3517.58 1.00

dataset 10 loc -0.83 1.02 -2.73 -0.84 1.06 0.02 3133.42 1.00

scale 10.24 0.74 8.98 10.18 11.70 0.01 3543.26 1.00
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B.2 Linear Regression Model - HMC Results

Table B.4 shows the total runtimes and acceptance ratios of HMC proposals for each dataset, while

Table B.3 contains the corresponding sampling result statistics and diagnostics. Following the same

reasoning as before, datasets 2 and 6 are ignored in further evaluations.

Table B.3: HMC posterior statistics and diagnostics

statistics diagnostics

dataset param mean sd HDI 3% mode HDI 97% mcse-mean ess-mean R̂

dataset 1 beta0 -8.08 1.54 -10.92 -8.09 -5.11 0.04 1750.19 1.00

beta1 1.39 0.16 1.08 1.40 1.70 0.00 4673.37 1.00

scale 15.21 1.11 13.29 15.16 17.44 0.02 2285.59 1.00

dataset 2 beta0 14.01 6.59 0.84 17.22 17.81 2.93 5.05 1.42

beta1 -3.69 2.32 -4.90 -4.84 0.95 1.03 5.04 1.42

scale 2.26 0.98 0.33 2.68 3.12 0.43 5.20 1.42

dataset 3 beta0 0.18 0.22 -0.24 0.18 0.59 0.01 1837.95 1.00

beta1 -4.75 0.02 -4.79 -4.75 -4.71 0.00 4313.89 1.00

scale 2.16 0.16 1.89 2.16 2.49 0.00 2517.17 1.00

dataset 4 beta0 5.08 0.93 3.29 5.09 6.85 0.02 1774.23 1.00

beta1 14.30 0.09 14.14 14.30 14.46 0.00 4540.18 1.00

scale 9.50 0.69 8.34 9.45 10.88 0.01 2502.84 1.00

dataset 5 beta0 17.17 1.64 14.11 17.15 20.34 0.04 2026.71 1.00

beta1 2.65 0.19 2.29 2.65 3.01 0.00 4644.12 1.00

scale 16.25 1.17 14.29 16.17 18.57 0.02 2694.28 1.00

dataset 6 beta0 3.66 2.27 0.23 3.98 7.49 0.77 8.71 1.38

beta1 -1.10 0.45 -1.65 -1.24 -0.26 0.19 5.84 1.42

scale 13.81 6.71 0.56 16.68 19.44 2.95 5.17 1.43

dataset 7 beta0 -8.12 0.87 -9.80 -8.11 -6.55 0.02 1936.37 1.00

beta1 3.61 0.09 3.43 3.61 3.78 0.00 4154.23 1.00

scale 8.66 0.63 7.58 8.61 9.96 0.01 2193.39 1.00

dataset 8 beta0 13.20 1.16 11.00 13.19 15.38 0.03 1968.01 1.00

beta1 -0.83 0.12 -1.04 -0.83 -0.61 0.00 4522.25 1.00

scale 11.74 0.86 10.28 11.67 13.53 0.02 2348.91 1.00

dataset 9 beta0 1.33 0.70 -0.02 1.34 2.66 0.02 1851.88 1.00

beta1 -7.63 0.06 -7.75 -7.63 -7.51 0.00 4452.62 1.00

scale 7.09 0.52 6.22 7.06 8.14 0.01 2272.63 1.00

dataset 10 beta0 -2.56 1.55 -5.38 -2.56 0.34 0.04 1948.46 1.00

beta1 5.07 0.15 4.78 5.07 5.36 0.00 4575.32 1.00

scale 15.93 1.13 14.04 15.88 18.24 0.02 2311.21 1.00
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Table B.4: runtime and acceptance ratios per chain for each dataset

acceptance ratio

dataset runtime [s] chain 1 chain 2 chain 3 chain 4 chain 5

dataset 1 203.48 0.939 0.956 0.945 0.957 0.952

dataset 2 265.99 0.996 0.995 0.993 0.000 0.996

dataset 3 244.64 0.944 0.953 0.962 0.967 0.962

dataset 4 255.26 0.962 0.949 0.939 0.955 0.959

dataset 5 184.29 0.949 0.952 0.939 0.940 0.958

dataset 6 283.88 0.996 0.994 0.000 0.995 0.995

dataset 7 221.83 0.943 0.942 0.959 0.944 0.951

dataset 8 235.78 0.947 0.956 0.956 0.954 0.946

dataset 9 262.53 0.959 0.953 0.938 0.951 0.957

dataset 10 222.94 0.945 0.944 0.948 0.944 0.941



Appendix C

Variational Inference Results

This appendix reports the variational inference results for both experiments.

C.1 Univariate Gaussian Model - VI Results

First, Figure C.1 shows the optimization loss histories for every dataset. The curves are smoothed

using an exponential moving average with smoothing factor ↵ = 0.1. Table C.1 summarizes the

statistics of the posterior approximation and the corresponding error metrics for each surrogate

posterior on every dataset.

Figure C.1: Optimization loss histories (univariate Gaussian datasets).
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Figure C.1: Optimization loss histories (univariate Gaussian datasets).
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Table C.1: Statistics and error metrics for each surrogate posterior (univariate Gaussian datasets).

statistics error metrics

dataset param surr. posterior mean sd HDI 3% mode HDI 97% mean err. sd err. W2

dataset 1 loc meanfield advi 3.38 0.17 3.07 3.37 3.69 0.00616 0.00353 0.00907

a�ne flow 3.38 0.17 3.06 3.38 3.68 0.01073 0.00219 0.01280

maf 3.38 0.17 3.06 3.38 3.70 0.01099 0.00543 0.01299

cnf 3.37 0.16 3.07 3.37 3.68 0.00499 0.00246 0.00697

hnf(1) 3.42 0.19 3.08 3.43 3.78 0.05635 0.02307 0.06148

hnf(2) 3.37 0.17 3.06 3.37 3.71 0.00415 0.01041 0.01410

hnf(3) 3.37 0.17 3.04 3.37 3.69 0.00514 0.01028 0.01211

scale meanfield advi 1.67 0.12 1.46 1.67 1.89 0.01218 0.00430 0.01625

a�ne flow 1.68 0.12 1.46 1.68 1.90 0.00082 0.00489 0.01045

maf 1.65 0.12 1.43 1.65 1.88 0.03180 0.00365 0.03348

cnf 1.67 0.12 1.46 1.66 1.93 0.00949 0.00139 0.01046

hnf(1) 1.69 0.13 1.46 1.68 1.92 0.00412 0.00300 0.01214

hnf(2) 1.70 0.12 1.49 1.69 1.96 0.01700 0.00198 0.01756

hnf(3) 1.71 0.12 1.50 1.70 1.97 0.03062 0.00113 0.03110

dataset 2 loc meanfield advi -2.02 0.25 -2.48 -2.02 -1.55 0.00464 0.00323 0.00961

a�ne flow -2.02 0.25 -2.50 -2.01 -1.54 0.01189 0.00679 0.01575

maf -2.01 0.24 -2.47 -2.01 -1.56 0.01439 0.00243 0.01720

cnf -2.02 0.26 -2.48 -2.02 -1.52 0.00926 0.00967 0.01837

hnf(1) -1.91 0.25 -2.38 -1.92 -1.45 0.11248 0.00047 0.11341

hnf(2) -2.09 0.26 -2.58 -2.08 -1.59 0.06211 0.01840 0.07172

hnf(3) -2.00 0.25 -2.47 -2.00 -1.54 0.02242 0.00399 0.02513

scale meanfield advi 2.48 0.18 2.14 2.48 2.83 0.00783 0.00157 0.01792

a�ne flow 2.49 0.17 2.17 2.49 2.83 0.00194 0.00797 0.01553

maf 2.47 0.17 2.14 2.48 2.80 0.01656 0.00992 0.02623

cnf 2.50 0.18 2.20 2.49 2.87 0.01258 0.00502 0.01578

hnf(1) 2.57 0.19 2.22 2.57 2.95 0.08399 0.01251 0.08666

hnf(2) 2.56 0.19 2.22 2.55 2.93 0.06712 0.00764 0.06820

hnf(3) 2.48 0.19 2.14 2.47 2.87 0.00524 0.01326 0.01508

dataset 3 loc meanfield advi 11.33 0.06 11.22 11.33 11.45 0.00097 0.00047 0.00141

a�ne flow 11.33 0.06 11.22 11.33 11.45 0.00097 0.00136 0.00208

maf 11.33 0.06 11.21 11.33 11.45 0.00231 0.00214 0.00296

cnf 11.35 0.07 11.23 11.35 11.48 0.02149 0.00408 0.02220

hnf(1) 11.58 0.32 11.17 11.54 12.17 0.24447 0.25489 0.35969

hnf(2) 11.30 0.09 11.15 11.30 11.45 0.02991 0.02539 0.04470

hnf(3) 11.33 0.07 11.20 11.33 11.47 0.00321 0.00992 0.01303

scale meanfield advi 0.63 0.04 0.55 0.63 0.72 0.00354 0.00099 0.00460

a�ne flow 0.62 0.04 0.55 0.62 0.71 0.00102 0.00236 0.00370

maf 0.64 0.06 0.53 0.63 0.74 0.00813 0.00921 0.01266

cnf 0.63 0.05 0.55 0.62 0.73 0.00066 0.00013 0.00392

hnf(1) 0.58 0.08 0.47 0.57 0.74 0.04185 0.03657 0.06001

hnf(2) 0.66 0.17 0.56 0.65 0.77 0.03069 0.12591 0.16120

hnf(3) 0.60 0.04 0.53 0.60 0.70 0.02116 0.00237 0.02170

Continued on next page
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statistics error metrics

dataset param surr. posterior mean sd HDI 3% mode HDI 97% mean err. sd err. W2

dataset 4 loc meanfield advi 4.59 0.37 3.89 4.60 5.27 0.00311 0.01138 0.01598

a�ne flow 4.59 0.36 3.88 4.60 5.26 0.00098 0.01496 0.01813

maf 4.59 0.36 3.90 4.59 5.25 0.00428 0.01559 0.02229

cnf 4.58 0.37 3.90 4.58 5.28 0.01115 0.00998 0.02228

hnf(1) 4.55 0.40 3.82 4.56 5.29 0.03965 0.01884 0.04578

hnf(2) 4.62 0.39 3.90 4.61 5.36 0.02496 0.00913 0.03231

hnf(3) 4.50 0.36 3.84 4.50 5.20 0.08665 0.01384 0.08940

scale meanfield advi 3.75 0.25 3.28 3.76 4.23 0.00158 0.02051 0.03092

a�ne flow 3.76 0.26 3.28 3.75 4.22 0.00130 0.01393 0.02948

maf 3.79 0.26 3.31 3.79 4.28 0.03042 0.01733 0.04047

cnf 3.73 0.27 3.25 3.72 4.29 0.02228 0.00512 0.02495

hnf(1) 3.84 0.27 3.36 3.84 4.38 0.08808 0.00273 0.08962

hnf(2) 3.75 0.26 3.28 3.74 4.27 0.00669 0.01095 0.01722

hnf(3) 3.64 0.27 3.18 3.63 4.17 0.11258 0.00741 0.11367

dataset 5 loc meanfield advi -5.74 0.76 -7.18 -5.74 -4.34 0.95447 1.42127 1.83072

a�ne flow -5.78 0.75 -7.21 -5.79 -4.37 0.99564 1.42877 1.85304

maf -5.76 0.75 -7.16 -5.75 -4.35 0.97233 1.43331 1.84796

cnf -5.74 0.76 -7.16 -5.73 -4.33 0.95248 1.42312 1.83106

hnf(1) -5.78 0.85 -7.39 -5.78 -4.19 0.98913 1.32835 1.79854

hnf(2) -5.96 0.78 -7.44 -5.97 -4.44 1.17117 1.40362 1.94231

hnf(3) -5.68 0.79 -7.17 -5.68 -4.19 0.88861 1.39164 1.77616

scale meanfield advi 7.74 0.54 6.75 7.73 8.80 1.46317 2.44011 2.95682

a�ne flow 7.72 0.53 6.71 7.72 8.73 1.45145 2.45081 2.95576

maf 7.77 0.53 6.78 7.77 8.77 1.49539 2.45403 2.98149

cnf 7.69 0.56 6.68 7.67 8.80 1.42068 2.42638 2.93958

hnf(1) 7.75 0.64 6.67 7.71 8.99 1.47552 2.34596 2.93827

hnf(2) 7.76 0.52 6.83 7.72 8.83 1.48144 2.45832 2.99170

hnf(3) 7.71 0.58 6.69 7.68 8.87 1.43632 2.39984 2.93024

dataset 6 loc meanfield advi -17.00 1.10 -19.06 -16.98 -14.94 0.06578 0.03301 0.08163

a�ne flow -16.90 1.08 -19.03 -16.87 -14.92 0.02659 0.01399 0.05924

maf -16.94 1.06 -18.89 -16.93 -14.92 0.01412 0.01402 0.03855

cnf -16.87 1.07 -18.86 -16.88 -14.88 0.05815 0.00070 0.06727

hnf(1) -17.04 1.03 -18.92 -17.05 -15.05 0.11252 0.03958 0.12527

hnf(2) -16.59 1.05 -18.57 -16.58 -14.61 0.34282 0.01926 0.34783

hnf(3) -17.29 1.05 -19.27 -17.28 -15.27 0.35751 0.02380 0.36127

scale meanfield advi 11.00 0.75 9.62 11.00 12.39 0.03362 0.02321 0.07176

a�ne flow 11.00 0.77 9.57 11.00 12.43 0.03284 0.00366 0.07396

maf 11.05 0.64 9.86 11.06 12.27 0.07599 0.13280 0.16408

cnf 10.99 0.80 9.64 10.95 12.61 0.01799 0.03091 0.04530

hnf(1) 10.89 0.78 9.53 10.83 12.50 0.07951 0.01382 0.08741

hnf(2) 11.00 0.77 9.62 10.97 12.50 0.03329 0.00446 0.04371

hnf(3) 10.89 0.77 9.51 10.88 12.37 0.08318 0.00217 0.08884

Continued on next page
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statistics error metrics

dataset param surr. posterior mean sd HDI 3% mode HDI 97% mean err. sd err. W2

dataset 7 loc meanfield advi 5.12 0.56 4.04 5.13 6.20 1.19964 1.92978 2.38087

a�ne flow 5.13 0.55 4.10 5.12 6.13 1.20342 1.94993 2.39584

maf 5.12 0.54 4.09 5.10 6.12 1.19051 1.95618 2.39378

cnf 5.17 0.54 4.15 5.17 6.17 1.24435 1.95571 2.42223

hnf(1) 5.10 0.56 4.09 5.07 6.20 1.16929 1.92966 2.38062

hnf(2) 5.24 0.56 4.20 5.24 6.30 1.30984 1.93243 2.43977

hnf(3) 5.22 0.54 4.18 5.22 6.21 1.29774 1.95441 2.44572

scale meanfield advi 5.57 0.40 4.81 5.57 6.32 1.04335 1.72200 2.09215

a�ne flow 5.57 0.38 4.87 5.57 6.30 1.04884 1.73416 2.10583

maf 5.45 0.38 4.71 5.44 6.14 0.92265 1.74147 2.05003

cnf 5.61 0.41 4.88 5.59 6.43 1.08566 1.70553 2.11476

hnf(1) 5.53 0.39 4.82 5.52 6.32 1.00118 1.72646 2.08166

hnf(2) 5.63 0.40 4.93 5.61 6.44 1.10517 1.71578 2.13285

hnf(3) 5.49 0.39 4.83 5.47 6.29 0.96517 1.72723 2.07538

dataset 8 loc meanfield advi -7.38 0.42 -8.16 -7.38 -6.56 0.03376 0.01702 0.04137

a�ne flow -7.38 0.42 -8.18 -7.38 -6.59 0.02494 0.01262 0.03168

maf -7.41 0.43 -8.22 -7.42 -6.62 0.00324 0.00611 0.01635

cnf -7.44 0.45 -8.26 -7.44 -6.56 0.02822 0.00992 0.03454

hnf(1) -7.42 0.45 -8.26 -7.41 -6.59 0.00894 0.00966 0.02539

hnf(2) -7.25 0.42 -8.02 -7.26 -6.43 0.15572 0.01421 0.15747

hnf(3) -7.40 0.47 -8.28 -7.41 -6.50 0.00386 0.03269 0.03634

scale meanfield advi 4.30 0.31 3.73 4.30 4.88 0.01281 0.00078 0.03030

a�ne flow 4.30 0.30 3.73 4.30 4.86 0.01798 0.00691 0.03499

maf 4.36 0.34 3.71 4.36 5.00 0.04038 0.03544 0.06201

cnf 4.36 0.32 3.83 4.35 4.99 0.04716 0.00832 0.04923

hnf(1) 4.20 0.32 3.61 4.19 4.84 0.12078 0.01717 0.12385

hnf(2) 4.45 0.32 3.89 4.43 5.09 0.12850 0.01227 0.12984

hnf(3) 4.39 0.33 3.80 4.38 5.04 0.07223 0.02397 0.07863

dataset 9 loc meanfield advi 13.94 0.18 13.59 13.94 14.29 0.00278 0.00074 0.00441

a�ne flow 13.93 0.18 13.59 13.92 14.26 0.01183 0.00547 0.01380

maf 13.94 0.18 13.62 13.94 14.29 0.00413 0.00366 0.00753

cnf 13.96 0.19 13.59 13.96 14.32 0.01980 0.00505 0.02435

hnf(1) 14.19 0.26 13.70 14.19 14.67 0.24982 0.07751 0.26271

hnf(2) 13.84 0.22 13.43 13.85 14.23 0.09332 0.03261 0.10247

hnf(3) 13.86 0.21 13.47 13.86 14.26 0.07889 0.02700 0.08427

scale meanfield advi 1.84 0.13 1.60 1.84 2.08 0.00652 0.00588 0.01323

a�ne flow 1.84 0.13 1.60 1.84 2.09 0.00595 0.00333 0.01237

maf 1.78 0.17 1.48 1.78 2.10 0.06698 0.03539 0.07658

cnf 1.85 0.14 1.63 1.84 2.15 0.00596 0.00555 0.01078

hnf(1) 1.86 0.15 1.58 1.86 2.14 0.01024 0.01587 0.02193

hnf(2) 1.89 0.13 1.63 1.88 2.13 0.03756 0.00205 0.03907

hnf(3) 1.80 0.14 1.55 1.79 2.06 0.05059 0.00339 0.05146

Continued on next page
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statistics error metrics

dataset param surr. posterior mean sd HDI 3% mode HDI 97% mean err. sd err. W2

dataset 10 loc meanfield advi -0.83 1.02 -2.79 -0.82 1.09 0.00699 0.00176 0.03653

a�ne flow -0.81 1.03 -2.74 -0.83 1.13 0.02550 0.01036 0.04133

maf -0.84 1.05 -2.86 -0.84 1.11 0.01082 0.03193 0.04427

cnf -0.88 1.03 -2.78 -0.91 1.17 0.04260 0.00888 0.06672

hnf(1) -0.70 1.02 -2.63 -0.69 1.25 0.13792 0.00305 0.14399

hnf(2) -0.57 1.01 -2.48 -0.58 1.28 0.25806 0.00735 0.26119

hnf(3) -0.64 0.98 -2.52 -0.64 1.21 0.19068 0.03791 0.19806

scale meanfield advi 10.20 0.70 8.85 10.20 11.58 0.03020 0.03331 0.08199

a�ne flow 10.25 0.71 8.92 10.23 11.59 0.01519 0.03168 0.07438

maf 10.14 0.86 8.46 10.15 11.75 0.09883 0.12320 0.17849

cnf 10.10 0.73 8.80 10.06 11.55 0.13736 0.00854 0.14122

hnf(1) 9.88 0.80 8.48 9.85 11.47 0.35942 0.05696 0.37460

hnf(2) 10.38 0.74 9.08 10.36 11.84 0.14884 0.00002 0.15441

hnf(3) 10.38 0.70 9.13 10.36 11.72 0.15003 0.03853 0.15970

C.2 Linear Regression Model - VI Results

Figure C.2 shows the optimization loss histories for all linear regression datasets. The curves are

smoothed using an exponential moving average with smoothing factor ↵ = 0.1. Table C.2 sum-

marizes the statistics of the posterior approximation and the corresponding error metrics for each

surrogate posterior on every dataset.

Figure C.2: Optimization loss histories (linear regression datasets).
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Figure C.2: Optimization loss histories (linear regression datasets).
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Table C.2: Statistics and error metrics for each surrogate posterior (linear regression datasets).

statistics error metrics

dataset param surr. posterior mean sd HDI 3% mode HDI 97% mean err. sd err. W2

dataset 1 beta0 meanfield advi -8.07 1.53 -10.93 -8.13 -5.16 0.00794 0.00925 0.06954

a�ne flow -8.10 1.47 -10.84 -8.10 -5.37 0.02449 0.07048 0.10737

maf -8.15 1.54 -11.07 -8.13 -5.20 0.07078 0.00179 0.11805

cnf -8.22 1.55 -11.02 -8.24 -5.27 0.14640 0.00993 0.17920

hnf(1) -8.20 1.46 -10.91 -8.21 -5.43 0.12297 0.07989 0.16314

hnf(2) -8.38 1.44 -11.14 -8.35 -5.62 0.30453 0.10555 0.33426

hnf(3) -7.70 1.45 -10.43 -7.69 -5.01 0.37770 0.08911 0.39520

beta1 meanfield advi 1.39 0.16 1.08 1.40 1.70 0.00379 0.00154 0.00624

a�ne flow 1.39 0.16 1.09 1.39 1.70 0.00120 0.00055 0.00723

maf 1.37 0.16 1.07 1.37 1.66 0.02273 0.00659 0.02452

cnf 1.41 0.17 1.08 1.41 1.72 0.01669 0.00590 0.01854

hnf(1) 1.32 0.18 0.98 1.33 1.65 0.06637 0.02195 0.07171

hnf(2) 1.39 0.17 1.06 1.39 1.71 0.00136 0.00809 0.01042

hnf(3) 1.35 0.16 1.05 1.34 1.67 0.04308 0.00190 0.04467

scale meanfield advi 15.18 1.05 13.22 15.19 17.17 0.03200 0.05981 0.11950

a�ne flow 15.22 1.02 13.36 15.19 17.18 0.00828 0.08827 0.12765

maf 15.09 1.10 13.00 15.10 17.17 0.11895 0.00347 0.16111

cnf 15.14 1.03 13.27 15.10 17.18 0.07328 0.07545 0.12484

hnf(1) 15.40 1.07 13.60 15.39 17.38 0.19106 0.03727 0.30292

hnf(2) 15.10 1.07 13.15 15.07 17.18 0.11467 0.04092 0.13654

hnf(3) 14.98 1.02 13.18 14.96 17.00 0.22803 0.08990 0.25141

dataset 2 beta0 meanfield advi 17.30 0.27 16.80 17.30 17.80 3.29371 6.32153 7.19564

a�ne flow 17.29 0.29 16.73 17.29 17.84 3.28347 6.29827 7.17476

maf 17.30 0.27 16.80 17.30 17.82 3.29067 6.31486 7.19194

cnf 17.34 0.28 16.79 17.34 17.84 3.32664 6.30947 7.20260

hnf(1) 17.17 0.44 16.44 17.16 17.96 3.15905 6.14617 7.05757

hnf(2) 17.10 0.30 16.53 17.10 17.65 3.09352 6.28380 7.08257

hnf(3) 17.19 0.32 16.59 17.19 17.77 3.18306 6.27359 7.11513

beta1 meanfield advi -4.85 0.03 -4.90 -4.85 -4.80 1.15766 2.29068 2.57378

a�ne flow -4.85 0.03 -4.90 -4.85 -4.80 1.15884 2.29139 2.57464

maf -4.87 0.03 -4.92 -4.87 -4.82 1.18270 2.29185 2.58581

cnf -4.85 0.03 -4.90 -4.85 -4.80 1.16078 2.28913 2.57452

hnf(1) -4.99 0.11 -5.14 -4.98 -4.87 1.29968 2.20761 2.61968

hnf(2) -4.80 0.04 -4.86 -4.80 -4.72 1.10597 2.27575 2.54303

hnf(3) -4.86 0.04 -4.93 -4.86 -4.79 1.17444 2.27958 2.57474

scale meanfield advi 2.75 0.19 2.40 2.75 3.12 0.48665 0.78847 0.96391

a�ne flow 2.73 0.20 2.37 2.73 3.11 0.46706 0.78593 0.95368

maf 2.74 0.18 2.41 2.73 3.09 0.47100 0.79800 0.96584

cnf 2.78 0.20 2.44 2.77 3.21 0.51652 0.78047 0.98387

hnf(1) 3.11 0.35 2.56 3.08 3.82 0.84857 0.63387 1.14116

hnf(2) 2.78 0.23 2.39 2.76 3.25 0.51242 0.75244 0.96553

hnf(3) 2.81 0.23 2.42 2.79 3.29 0.54061 0.75183 0.98250
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statistics error metrics

dataset param surr. posterior mean sd HDI 3% mode HDI 97% mean err. sd err. W2

dataset 3 beta0 meanfield advi 0.19 0.22 -0.21 0.19 0.61 0.01548 0.00398 0.01775

a�ne flow 0.22 0.22 -0.20 0.22 0.61 0.03777 0.00278 0.03886

maf 0.17 0.22 -0.25 0.17 0.57 0.00816 0.00091 0.01071

cnf 0.17 0.22 -0.23 0.18 0.57 0.00424 0.00295 0.01021

hnf(1) 0.23 0.26 -0.24 0.23 0.70 0.05502 0.03851 0.07358

hnf(2) 0.15 0.25 -0.28 0.15 0.59 0.02610 0.03078 0.08741

hnf(3) 0.14 0.22 -0.27 0.14 0.54 0.03489 0.00417 0.03643

beta1 meanfield advi -4.75 0.02 -4.79 -4.75 -4.72 0.00453 0.00029 0.00452

a�ne flow -4.75 0.02 -4.79 -4.75 -4.71 0.00203 0.00052 0.00212

maf -4.76 0.02 -4.80 -4.76 -4.73 0.01495 0.00020 0.01498

cnf -4.74 0.02 -4.78 -4.74 -4.70 0.00591 0.00004 0.00598

hnf(1) -4.78 0.16 -4.89 -4.78 -4.65 0.02782 0.13503 0.14990

hnf(2) -4.75 0.08 -4.80 -4.75 -4.69 0.00266 0.05770 0.07092

hnf(3) -4.77 0.03 -4.82 -4.76 -4.72 0.01609 0.00727 0.01773

scale meanfield advi 2.15 0.15 1.88 2.15 2.44 0.01001 0.01075 0.01842

a�ne flow 2.17 0.15 1.89 2.16 2.47 0.00544 0.00474 0.01486

maf 2.26 0.16 1.96 2.26 2.57 0.09375 0.00153 0.09484

cnf 2.17 0.16 1.90 2.16 2.49 0.00254 0.00057 0.00470

hnf(1) 2.37 0.21 2.03 2.36 2.76 0.20179 0.04775 0.20899

hnf(2) 2.15 0.27 1.82 2.12 2.54 0.01854 0.11013 0.16661

hnf(3) 2.19 0.18 1.88 2.19 2.53 0.02556 0.01779 0.03282

dataset 4 beta0 meanfield advi 5.08 0.96 3.27 5.09 6.83 0.00580 0.02570 0.04796

a�ne flow 5.08 0.94 3.32 5.08 6.84 0.00143 0.00733 0.03596

maf 5.07 0.95 3.30 5.07 6.87 0.01417 0.01645 0.04206

cnf 5.03 0.95 3.23 5.07 6.74 0.04653 0.01594 0.07029

hnf(1) 5.06 1.10 2.94 5.10 7.06 0.01753 0.16544 0.17431

hnf(2) 5.15 1.04 3.23 5.13 7.18 0.07126 0.11068 0.13781

hnf(3) 4.86 0.98 3.01 4.85 6.68 0.22068 0.05059 0.23074

beta1 meanfield advi 14.30 0.08 14.14 14.30 14.46 0.00184 0.00095 0.00235

a�ne flow 14.30 0.09 14.15 14.30 14.48 0.00614 0.00346 0.00712

maf 14.30 0.07 14.17 14.30 14.44 0.00249 0.01512 0.01537

cnf 14.25 0.09 14.08 14.25 14.40 0.05235 0.00142 0.05265

hnf(1) 14.39 0.24 13.99 14.38 14.83 0.08853 0.15859 0.18772

hnf(2) 14.37 0.23 14.01 14.38 14.72 0.07506 0.14940 0.18197

hnf(3) 14.32 0.14 14.07 14.32 14.55 0.01917 0.05173 0.06669

scale meanfield advi 9.48 0.66 8.28 9.48 10.73 0.01672 0.02655 0.06238

a�ne flow 9.49 0.66 8.26 9.48 10.72 0.01077 0.02692 0.06380

maf 9.44 0.71 8.14 9.42 10.83 0.05962 0.02776 0.08227

cnf 9.44 0.69 8.24 9.40 10.77 0.05838 0.00568 0.06273

hnf(1) 9.96 0.93 8.48 9.85 11.87 0.45617 0.24802 0.53339

hnf(2) 9.79 0.80 8.49 9.73 11.40 0.28998 0.11035 0.31340

hnf(3) 9.68 0.73 8.41 9.64 11.14 0.18338 0.04704 0.19381
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statistics error metrics

dataset param surr. posterior mean sd HDI 3% mode HDI 97% mean err. sd err. W2

dataset 5 beta0 meanfield advi 17.11 1.60 14.06 17.12 20.20 0.05293 0.04642 0.08672

a�ne flow 17.15 1.57 14.30 17.11 20.08 0.01717 0.07567 0.09991

maf 17.12 1.62 14.10 17.11 20.13 0.04059 0.02109 0.06985

cnf 17.03 1.63 13.72 17.11 19.91 0.13161 0.01259 0.20674

hnf(1) 17.36 1.53 14.35 17.38 20.16 0.19483 0.11481 0.23897

hnf(2) 17.02 1.58 13.98 17.05 19.94 0.14102 0.05726 0.18029

hnf(3) 17.47 1.64 14.34 17.48 20.49 0.30442 0.00363 0.31562

beta1 meanfield advi 2.63 0.19 2.27 2.63 2.98 0.01846 0.00028 0.01972

a�ne flow 2.64 0.19 2.27 2.64 3.00 0.00790 0.00041 0.01083

maf 2.71 0.21 2.32 2.71 3.10 0.06569 0.01535 0.06808

cnf 2.64 0.20 2.27 2.64 3.01 0.00364 0.00394 0.01191

hnf(1) 2.58 0.23 2.17 2.58 3.04 0.06442 0.03919 0.07611

hnf(2) 2.59 0.19 2.23 2.59 2.96 0.05756 0.00210 0.05835

hnf(3) 2.67 0.20 2.29 2.66 3.05 0.02073 0.01229 0.02525

scale meanfield advi 16.25 1.11 14.18 16.25 18.30 0.00437 0.06629 0.12483

a�ne flow 16.30 1.08 14.30 16.26 18.37 0.04681 0.09549 0.13652

maf 16.29 1.27 13.94 16.28 18.70 0.04397 0.09322 0.13780

cnf 16.35 1.12 14.38 16.29 18.57 0.09896 0.05314 0.12054

hnf(1) 16.14 1.01 14.23 16.14 18.03 0.10742 0.15896 0.21346

hnf(2) 16.34 1.14 14.33 16.29 18.55 0.08707 0.03607 0.10823

hnf(3) 16.26 1.14 14.25 16.22 18.56 0.01319 0.03090 0.05335

dataset 6 beta0 meanfield advi 4.54 1.73 1.40 4.50 7.84 0.88013 0.54109 1.14157

a�ne flow 4.57 1.69 1.38 4.59 7.71 0.91412 0.58086 1.18392

maf 4.50 1.64 1.61 4.45 7.71 0.84058 0.63143 1.14916

cnf 4.46 1.66 1.31 4.47 7.48 0.80086 0.61004 1.09417

hnf(1) 4.52 1.67 1.38 4.51 7.58 0.86039 0.60031 1.15250

hnf(2) 4.58 1.71 1.40 4.55 7.80 0.92655 0.56213 1.19259

hnf(3) 4.45 1.64 1.34 4.42 7.45 0.78930 0.63352 1.11120

beta1 meanfield advi -1.28 0.18 -1.62 -1.29 -0.95 0.18746 0.27663 0.35674

a�ne flow -1.31 0.18 -1.67 -1.31 -0.97 0.21527 0.26960 0.36727

maf -1.29 0.19 -1.65 -1.29 -0.92 0.19074 0.26313 0.34789

cnf -1.29 0.20 -1.68 -1.29 -0.92 0.19591 0.25581 0.34892

hnf(1) -1.32 0.18 -1.67 -1.32 -0.97 0.21895 0.26943 0.36965

hnf(2) -1.33 0.20 -1.70 -1.33 -0.95 0.23183 0.25399 0.36758

hnf(3) -1.30 0.19 -1.66 -1.29 -0.94 0.19841 0.26457 0.35630

scale meanfield advi 17.11 1.18 14.94 17.11 19.37 3.29788 5.52787 6.68153

a�ne flow 17.06 1.19 14.83 17.04 19.32 3.24603 5.52552 6.64949

maf 16.83 1.19 14.53 16.84 19.12 3.02309 5.52209 6.54016

cnf 17.15 1.19 14.95 17.14 19.44 3.34044 5.52653 6.70826

hnf(1) 17.33 1.01 15.45 17.33 19.21 3.51438 5.70675 6.89733

hnf(2) 17.50 1.20 15.30 17.47 19.78 3.68500 5.51164 6.87773

hnf(3) 17.14 1.13 15.12 17.09 19.38 3.32642 5.57926 6.74112
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statistics error metrics

dataset param surr. posterior mean sd HDI 3% mode HDI 97% mean err. sd err. W2

dataset 7 beta0 meanfield advi -8.14 0.84 -9.75 -8.13 -6.56 0.01426 0.02378 0.03935

a�ne flow -8.15 0.85 -9.74 -8.16 -6.51 0.02878 0.01416 0.04159

maf -8.15 0.86 -9.78 -8.14 -6.56 0.02633 0.01105 0.04320

cnf -8.13 0.86 -9.69 -8.15 -6.48 0.01010 0.00532 0.04355

hnf(1) -7.95 0.88 -9.59 -7.96 -6.30 0.17396 0.01256 0.17882

hnf(2) -8.12 0.89 -9.80 -8.12 -6.44 0.00007 0.02645 0.03915

hnf(3) -8.05 0.89 -9.72 -8.05 -6.38 0.07252 0.02567 0.08256

beta1 meanfield advi 3.62 0.09 3.45 3.62 3.79 0.01273 0.00055 0.01299

a�ne flow 3.61 0.09 3.45 3.61 3.78 0.00612 0.00224 0.00686

maf 3.58 0.08 3.42 3.58 3.74 0.02668 0.00633 0.02769

cnf 3.57 0.09 3.39 3.58 3.75 0.03405 0.00295 0.03457

hnf(1) 3.63 0.10 3.44 3.64 3.82 0.02654 0.01414 0.03093

hnf(2) 3.66 0.09 3.49 3.66 3.83 0.05026 0.00155 0.05070

hnf(3) 3.62 0.10 3.44 3.62 3.80 0.01226 0.00565 0.01385

scale meanfield advi 8.70 0.59 7.59 8.69 9.82 0.03987 0.03808 0.07633

a�ne flow 8.69 0.60 7.57 8.70 9.80 0.02517 0.03337 0.07565

maf 8.54 0.73 7.17 8.53 9.91 0.11794 0.10292 0.16923

cnf 8.62 0.61 7.49 8.61 9.79 0.04309 0.01995 0.06891

hnf(1) 8.46 0.62 7.32 8.44 9.72 0.19905 0.00915 0.20443

hnf(2) 8.51 0.61 7.44 8.48 9.74 0.14711 0.01892 0.15282

hnf(3) 8.67 0.60 7.61 8.64 9.85 0.00666 0.03025 0.04513

dataset 8 beta0 meanfield advi 13.13 1.13 10.96 13.15 15.24 0.07331 0.03266 0.08878

a�ne flow 13.19 1.18 11.04 13.18 15.44 0.01505 0.01604 0.05169

maf 13.12 1.16 10.93 13.12 15.29 0.07576 0.00549 0.08437

cnf 13.23 1.18 10.83 13.26 15.36 0.03246 0.02052 0.07421

hnf(1) 13.32 1.19 11.02 13.35 15.54 0.12076 0.02580 0.13231

hnf(2) 12.92 1.14 10.79 12.93 15.04 0.28272 0.02494 0.28836

hnf(3) 13.08 1.12 10.91 13.11 15.14 0.11834 0.04396 0.13133

beta1 meanfield advi -0.84 0.12 -1.06 -0.84 -0.63 0.01247 0.00237 0.01335

a�ne flow -0.82 0.12 -1.04 -0.82 -0.59 0.01265 0.00232 0.01370

maf -0.82 0.11 -1.04 -0.82 -0.62 0.00391 0.00502 0.00757

cnf -0.81 0.12 -1.03 -0.81 -0.59 0.01595 0.00147 0.01662

hnf(1) -0.81 0.13 -1.06 -0.81 -0.57 0.01992 0.01309 0.02514

hnf(2) -0.81 0.12 -1.03 -0.81 -0.59 0.01720 0.00100 0.01785

hnf(3) -0.82 0.12 -1.04 -0.82 -0.59 0.01312 0.00583 0.01579

scale meanfield advi 11.73 0.80 10.24 11.72 13.26 0.01170 0.06027 0.09624

a�ne flow 11.73 0.80 10.26 11.73 13.23 0.00972 0.05767 0.09497

maf 11.64 0.70 10.34 11.64 12.97 0.09567 0.15212 0.19495

cnf 11.78 0.88 10.22 11.75 13.52 0.04545 0.01994 0.07071

hnf(1) 11.86 0.82 10.41 11.83 13.50 0.12419 0.03571 0.14738

hnf(2) 11.65 0.84 10.17 11.63 13.32 0.08597 0.01577 0.10205

hnf(3) 11.67 0.83 10.18 11.64 13.27 0.07268 0.02773 0.09305
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statistics error metrics

dataset param surr. posterior mean sd HDI 3% mode HDI 97% mean err. sd err. W2

dataset 9 beta0 meanfield advi 1.32 0.69 -0.00 1.32 2.59 0.01306 0.01445 0.02981

a�ne flow 1.34 0.70 0.06 1.33 2.65 0.00597 0.00846 0.02772

maf 1.36 0.72 0.04 1.36 2.70 0.02697 0.01659 0.03783

cnf 1.26 0.71 -0.03 1.24 2.61 0.07069 0.00198 0.07690

hnf(1) 1.41 0.80 -0.11 1.41 2.91 0.07767 0.09019 0.12125

hnf(2) 1.39 0.82 -0.02 1.37 2.81 0.05480 0.11515 0.28468

hnf(3) 1.46 0.70 0.22 1.46 2.79 0.13302 0.00951 0.13645

beta1 meanfield advi -7.64 0.06 -7.75 -7.64 -7.52 0.00713 0.00338 0.00815

a�ne flow -7.62 0.06 -7.74 -7.62 -7.50 0.00737 0.00219 0.00801

maf -7.64 0.06 -7.76 -7.64 -7.52 0.01059 0.00115 0.01107

cnf -7.65 0.07 -7.76 -7.65 -7.52 0.01844 0.00125 0.01913

hnf(1) -7.53 0.11 -7.74 -7.53 -7.34 0.09522 0.04285 0.10510

hnf(2) -7.67 0.07 -7.80 -7.67 -7.54 0.04012 0.00628 0.04126

hnf(3) -7.66 0.07 -7.79 -7.66 -7.52 0.02980 0.00859 0.03306

scale meanfield advi 7.09 0.50 6.15 7.09 8.02 0.00640 0.01966 0.06928

a�ne flow 7.08 0.49 6.17 7.08 8.01 0.00815 0.02662 0.06637

maf 7.02 0.53 6.03 7.02 8.01 0.06868 0.00703 0.09360

cnf 7.16 0.53 6.27 7.14 8.18 0.07288 0.00642 0.07687

hnf(1) 7.23 0.58 6.22 7.21 8.32 0.13409 0.06321 0.18546

hnf(2) 7.07 0.51 6.17 7.04 8.08 0.02300 0.00889 0.03445

hnf(3) 7.24 0.55 6.34 7.20 8.28 0.14411 0.03137 0.19309

dataset 10 beta0 meanfield advi -2.62 1.56 -5.56 -2.63 0.26 0.06240 0.00944 0.08908

a�ne flow -2.63 1.51 -5.45 -2.65 0.23 0.06422 0.03909 0.09251

maf -2.64 1.53 -5.50 -2.66 0.28 0.07821 0.01387 0.09586

cnf -2.64 1.57 -5.54 -2.65 0.42 0.08265 0.02242 0.10031

hnf(1) -2.87 1.62 -5.83 -2.84 0.20 0.30643 0.07046 0.32129

hnf(2) -3.13 1.55 -6.05 -3.12 -0.24 0.56610 0.00403 0.57215

hnf(3) -2.68 1.50 -5.40 -2.70 0.19 0.11575 0.04887 0.13749

beta1 meanfield advi 5.07 0.15 4.78 5.07 5.35 0.00438 0.00252 0.00621

a�ne flow 5.08 0.15 4.82 5.08 5.37 0.01146 0.00227 0.01307

maf 5.14 0.13 4.89 5.14 5.39 0.06340 0.02105 0.06712

cnf 5.04 0.15 4.74 5.04 5.31 0.03827 0.00052 0.03893

hnf(1) 5.08 0.22 4.76 5.08 5.40 0.00346 0.07095 0.13321

hnf(2) 5.10 0.16 4.80 5.10 5.39 0.02456 0.00341 0.02538

hnf(3) 5.06 0.16 4.75 5.06 5.37 0.01712 0.01010 0.02048

scale meanfield advi 15.91 1.09 13.87 15.88 17.99 0.02700 0.03953 0.11773

a�ne flow 15.91 1.09 13.85 15.91 17.95 0.02624 0.03527 0.12340

maf 15.78 1.07 13.74 15.81 17.77 0.15318 0.05950 0.20666

cnf 15.88 1.09 13.82 15.87 17.91 0.05839 0.03881 0.13856

hnf(1) 16.37 1.08 14.46 16.30 18.47 0.43517 0.04254 0.44116

hnf(2) 16.05 1.09 14.06 16.03 18.12 0.11893 0.03522 0.15521

hnf(3) 15.92 1.11 14.00 15.87 18.13 0.01953 0.01632 0.06165
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